Sanja Rukavina, Vladimir D. Tonchev
下载PDF
{"title":"具有2阶自同构的对称2-(35,17,8)设计","authors":"Sanja Rukavina, Vladimir D. Tonchev","doi":"10.1002/jcd.21998","DOIUrl":null,"url":null,"abstract":"<p>The largest prime <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>p</mi>\n </mrow>\n </mrow>\n </semantics></math> that can be the order of an automorphism of a 2-<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>35</mn>\n \n <mo>,</mo>\n \n <mn>17</mn>\n \n <mo>,</mo>\n \n <mn>8</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> design is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>p</mi>\n \n <mo>=</mo>\n \n <mn>17</mn>\n </mrow>\n </mrow>\n </semantics></math>, and all 2-<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>35</mn>\n \n <mo>,</mo>\n \n <mn>17</mn>\n \n <mo>,</mo>\n \n <mn>8</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> designs with an automorphism of order 17 were classified by Tonchev. The symmetric 2-<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>35</mn>\n \n <mo>,</mo>\n \n <mn>17</mn>\n \n <mo>,</mo>\n \n <mn>8</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> designs with automorphisms of an odd prime order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>p</mi>\n \n <mo><</mo>\n \n <mn>17</mn>\n </mrow>\n </mrow>\n </semantics></math> were classified in Bouyukliev, Fack and Winne and Crnković and Rukavina. In this paper we give the classification of all symmetric 2-<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>35</mn>\n \n <mo>,</mo>\n \n <mn>17</mn>\n \n <mo>,</mo>\n \n <mn>8</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> designs that admit an automorphism of order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>p</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math>. It is shown that there are exactly <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>11</mn>\n \n <mtext>,642,</mtext>\n \n <mn>495</mn>\n </mrow>\n </mrow>\n </semantics></math> nonisomorphic such designs. Furthermore, it is shown that the number of nonisomorphic 3-<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>36</mn>\n \n <mo>,</mo>\n \n <mn>18</mn>\n \n <mo>,</mo>\n \n <mn>8</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> designs which have at least one derived 2-<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>35</mn>\n \n <mo>,</mo>\n \n <mn>17</mn>\n \n <mo>,</mo>\n \n <mn>8</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> design with an automorphism of order 2, is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>015</mn>\n \n <mo>,</mo>\n \n <mn>225</mn>\n </mrow>\n </mrow>\n </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 10","pages":"399-403"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21998","citationCount":"0","resultStr":"{\"title\":\"Symmetric 2-\\n \\n \\n \\n \\n (\\n \\n 35\\n ,\\n 17\\n ,\\n 8\\n \\n )\\n \\n \\n \\n Designs With an Automorphism of Order 2\",\"authors\":\"Sanja Rukavina, Vladimir D. Tonchev\",\"doi\":\"10.1002/jcd.21998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The largest prime <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> that can be the order of an automorphism of a 2-<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>35</mn>\\n \\n <mo>,</mo>\\n \\n <mn>17</mn>\\n \\n <mo>,</mo>\\n \\n <mn>8</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> design is <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>p</mi>\\n \\n <mo>=</mo>\\n \\n <mn>17</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>, and all 2-<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>35</mn>\\n \\n <mo>,</mo>\\n \\n <mn>17</mn>\\n \\n <mo>,</mo>\\n \\n <mn>8</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> designs with an automorphism of order 17 were classified by Tonchev. The symmetric 2-<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>35</mn>\\n \\n <mo>,</mo>\\n \\n <mn>17</mn>\\n \\n <mo>,</mo>\\n \\n <mn>8</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> designs with automorphisms of an odd prime order <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>p</mi>\\n \\n <mo><</mo>\\n \\n <mn>17</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> were classified in Bouyukliev, Fack and Winne and Crnković and Rukavina. In this paper we give the classification of all symmetric 2-<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>35</mn>\\n \\n <mo>,</mo>\\n \\n <mn>17</mn>\\n \\n <mo>,</mo>\\n \\n <mn>8</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> designs that admit an automorphism of order <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>p</mi>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>. It is shown that there are exactly <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>11</mn>\\n \\n <mtext>,642,</mtext>\\n \\n <mn>495</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> nonisomorphic such designs. Furthermore, it is shown that the number of nonisomorphic 3-<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>36</mn>\\n \\n <mo>,</mo>\\n \\n <mn>18</mn>\\n \\n <mo>,</mo>\\n \\n <mn>8</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> designs which have at least one derived 2-<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>35</mn>\\n \\n <mo>,</mo>\\n \\n <mn>17</mn>\\n \\n <mo>,</mo>\\n \\n <mn>8</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> design with an automorphism of order 2, is <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mn>015</mn>\\n \\n <mo>,</mo>\\n \\n <mn>225</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"33 10\",\"pages\":\"399-403\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21998\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21998\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21998","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用