行-列设计的枚举和构造

IF 0.5 4区 数学 Q3 MATHEMATICS
Gerold Jäger, Klas Markström, Denys Shcherbak, Lars-Daniel Öhman
{"title":"行-列设计的枚举和构造","authors":"Gerold Jäger,&nbsp;Klas Markström,&nbsp;Denys Shcherbak,&nbsp;Lars-Daniel Öhman","doi":"10.1002/jcd.21991","DOIUrl":null,"url":null,"abstract":"<p>We computationally completely enumerate a number of types of row-column designs up to isotopism, including double, sesqui, and triple arrays as known from the literature, and two newly introduced types that we call mono arrays and AO-arrays. We calculate autotopism group sizes for the designs we generate. For larger parameter values, where complete enumeration is not feasible, we generate examples of some of the designs, and for some admissible parameter sets, we prove non-existence results. We give some explicit constructions of sesqui arrays, mono arrays and AO-arrays, in particular, we prove constructively that AO-arrays exist for all feasible parameter sets. Finally, we investigate connections to Youden rectangles and binary pseudo-Youden designs.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 9","pages":"357-372"},"PeriodicalIF":0.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21991","citationCount":"0","resultStr":"{\"title\":\"Enumeration and Construction of Row-Column Designs\",\"authors\":\"Gerold Jäger,&nbsp;Klas Markström,&nbsp;Denys Shcherbak,&nbsp;Lars-Daniel Öhman\",\"doi\":\"10.1002/jcd.21991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We computationally completely enumerate a number of types of row-column designs up to isotopism, including double, sesqui, and triple arrays as known from the literature, and two newly introduced types that we call mono arrays and AO-arrays. We calculate autotopism group sizes for the designs we generate. For larger parameter values, where complete enumeration is not feasible, we generate examples of some of the designs, and for some admissible parameter sets, we prove non-existence results. We give some explicit constructions of sesqui arrays, mono arrays and AO-arrays, in particular, we prove constructively that AO-arrays exist for all feasible parameter sets. Finally, we investigate connections to Youden rectangles and binary pseudo-Youden designs.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"33 9\",\"pages\":\"357-372\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21991\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21991\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21991","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在计算上完整地列举了一些类型的行-列设计,直到同位素,包括从文献中已知的双阵列、单阵列和三重阵列,以及两种新引入的类型,我们称之为单阵列和ao -阵列。我们为我们生成的设计计算自拓群体大小。对于较大的参数值,在不能完全枚举的情况下,我们给出了一些设计的例子,对于一些允许的参数集,我们证明了不存在的结果。给出了倍序列、单阵列和ao -阵列的一些显式构造,特别是构造性地证明了ao -阵列对于所有可行参数集都存在。最后,我们研究了与约登矩形和二元伪约登设计的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enumeration and Construction of Row-Column Designs

Enumeration and Construction of Row-Column Designs

We computationally completely enumerate a number of types of row-column designs up to isotopism, including double, sesqui, and triple arrays as known from the literature, and two newly introduced types that we call mono arrays and AO-arrays. We calculate autotopism group sizes for the designs we generate. For larger parameter values, where complete enumeration is not feasible, we generate examples of some of the designs, and for some admissible parameter sets, we prove non-existence results. We give some explicit constructions of sesqui arrays, mono arrays and AO-arrays, in particular, we prove constructively that AO-arrays exist for all feasible parameter sets. Finally, we investigate connections to Youden rectangles and binary pseudo-Youden designs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信