完成部分k星设计

IF 0.8 4区 数学 Q3 MATHEMATICS
Ajani De Vas Gunasekara, Daniel Horsley
{"title":"完成部分k星设计","authors":"Ajani De Vas Gunasekara,&nbsp;Daniel Horsley","doi":"10.1002/jcd.22003","DOIUrl":null,"url":null,"abstract":"<p>A <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math><i>-star</i> is a complete bipartite graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. A <i>partial</i> <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math><i>-star design of order</i> <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> is a pair <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>V</mi>\n \n <mo>,</mo>\n \n <mi>A</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n </mrow>\n </mrow>\n </semantics></math> is a set of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>A</mi>\n </mrow>\n </mrow>\n </semantics></math> is a set of edge-disjoint <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-stars whose vertex sets are subsets of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n </mrow>\n </mrow>\n </semantics></math>. If each edge of the complete graph with vertex set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n </mrow>\n </mrow>\n </semantics></math> is in some star in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>A</mi>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>V</mi>\n \n <mo>,</mo>\n \n <mi>A</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> is a (complete) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math><i>-star design</i>. We say that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>V</mi>\n \n <mo>,</mo>\n \n <mi>A</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> is <i>completable</i> if there is a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-star design <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>V</mi>\n \n <mo>,</mo>\n \n <mi>ℬ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>A</mi>\n \n <mo>⊆</mo>\n \n <mi>ℬ</mi>\n </mrow>\n </mrow>\n </semantics></math>. In this paper we determine, for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>, the minimum number of stars in an uncompletable partial <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-star design of order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 12","pages":"446-455"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.22003","citationCount":"0","resultStr":"{\"title\":\"Completing Partial \\n \\n \\n \\n k\\n \\n \\n -Star Designs\",\"authors\":\"Ajani De Vas Gunasekara,&nbsp;Daniel Horsley\",\"doi\":\"10.1002/jcd.22003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math><i>-star</i> is a complete bipartite graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. A <i>partial</i> <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math><i>-star design of order</i> <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a pair <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>V</mi>\\n \\n <mo>,</mo>\\n \\n <mi>A</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>V</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a set of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> vertices and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>A</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a set of edge-disjoint <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-stars whose vertex sets are subsets of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>V</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. If each edge of the complete graph with vertex set <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>V</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is in some star in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>A</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>V</mi>\\n \\n <mo>,</mo>\\n \\n <mi>A</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> is a (complete) <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math><i>-star design</i>. We say that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>V</mi>\\n \\n <mo>,</mo>\\n \\n <mi>A</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> is <i>completable</i> if there is a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-star design <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>V</mi>\\n \\n <mo>,</mo>\\n \\n <mi>ℬ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>A</mi>\\n \\n <mo>⊆</mo>\\n \\n <mi>ℬ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. In this paper we determine, for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, the minimum number of stars in an uncompletable partial <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-star design of order <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"33 12\",\"pages\":\"446-455\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.22003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.22003\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.22003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

k *是一个完全二部图k1,k .n阶的部分k星设计是一对(V ,A)其中V是n的集合A是边不相交的k个星的集合,这些星的顶点集是V .如果顶点集V的完全图的每条边都在A中的某个星点上,然后(V);A)是一个(完全的)k星设计。我们说(V)A)是可完成的,如果有一个k星设计(v);例:A: 在本文中,我们确定,对于所有k和n,n阶不完全部分k星设计中的最小星数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Completing Partial 
         
            
               
                  k
               
            
         -Star Designs

Completing Partial k -Star Designs

A k -star is a complete bipartite graph K 1 , k . A partial k -star design of order n is a pair ( V , A ) where V is a set of n vertices and A is a set of edge-disjoint k -stars whose vertex sets are subsets of V . If each edge of the complete graph with vertex set V is in some star in A , then ( V , A ) is a (complete) k -star design. We say that ( V , A ) is completable if there is a k -star design ( V , ) such that A . In this paper we determine, for all k and n , the minimum number of stars in an uncompletable partial k -star design of order n .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信