Journal of Combinatorial Designs最新文献

筛选
英文 中文
On flag‐transitive 2‐ (k2,k,λ) $({k}^{2},k,lambda )$ designs with λ∣k $lambda | k$ 基于λ∣k $lambda | k$的标志传递2‐(k2,k,λ) $({k}^{2},k,lambda)$设计
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2022-07-29 DOI: 10.1002/jcd.21852
Alessandro Montinaro, Eliana Francot
{"title":"On flag‐transitive 2‐ (k2,k,λ) $({k}^{2},k,lambda )$ designs with λ∣k $lambda | k$","authors":"Alessandro Montinaro, Eliana Francot","doi":"10.1002/jcd.21852","DOIUrl":"https://doi.org/10.1002/jcd.21852","url":null,"abstract":"It is shown that, apart from the smallest Ree group, a flag‐transitive automorphism group G $G$ of a 2‐ (k2,k,λ) $({k}^{2},k,lambda )$ design D ${mathscr{D}}$ , with λ∣k $lambda | k$ , is either an affine group or an almost simple classical group. Moreover, when G $G$ is the smallest Ree group, D ${mathscr{D}}$ is isomorphic either to the 2‐ (62,6,2) $({6}^{2},6,2)$ design or to one of the three 2‐ (62,6,6) $({6}^{2},6,6)$ designs constructed in this paper. All the four 2‐designs have the 36 secants of a non‐degenerate conic C ${mathscr{C}}$ of PG2(8) $P{G}_{2}(8)$ as a point set and 6‐sets of secants in a remarkable configuration as a block set.","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"20 1","pages":"653 - 670"},"PeriodicalIF":0.7,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76703413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On flag-transitive 2- ( k 2 , k , λ ) $({k}^{2},k,lambda )$ designs with λ ∣ k $lambda | k$ 关于λ为的标志传递2-(k2,k,λ)$({k}^{2},k,lambda)$设计k$lambda|k$
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2022-07-29 DOI: 10.1002/jcd.21852
Alessandro Montinaro, Eliana Francot
{"title":"On flag-transitive 2-\u0000 \u0000 \u0000 (\u0000 \u0000 \u0000 k\u0000 2\u0000 \u0000 ,\u0000 k\u0000 ,\u0000 λ\u0000 \u0000 )\u0000 \u0000 $({k}^{2},k,lambda )$\u0000 designs with \u0000 \u0000 \u0000 λ\u0000 ∣\u0000 k\u0000 \u0000 $lambda | k$","authors":"Alessandro Montinaro, Eliana Francot","doi":"10.1002/jcd.21852","DOIUrl":"https://doi.org/10.1002/jcd.21852","url":null,"abstract":"<p>It is shown that, apart from the smallest Ree group, a flag-transitive automorphism group <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> of a 2-<math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <msup>\u0000 <mi>k</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>,</mo>\u0000 <mi>k</mi>\u0000 <mo>,</mo>\u0000 <mi>λ</mi>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation> $({k}^{2},k,lambda )$</annotation>\u0000 </semantics></math> design <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{D}}$</annotation>\u0000 </semantics></math>, with <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 <mo>∣</mo>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $lambda | k$</annotation>\u0000 </semantics></math>, is either an affine group or an almost simple classical group. Moreover, when <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is the smallest Ree group, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{D}}$</annotation>\u0000 </semantics></math> is isomorphic either to the 2-<math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <msup>\u0000 <mn>6</mn>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>,</mo>\u0000 <mn>6</mn>\u0000 <mo>,</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation> $({6}^{2},6,2)$</annotation>\u0000 </semantics></math> design or to one of the three 2-<math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <msup>\u0000 <mn>6</mn>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>,</mo>\u0000 <mn>6</mn>\u0000 <mo>,</mo>\u0000 <mn>6</mn>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation> $({6}^{2},6,6)$</annotation>\u0000 </semantics></math> designs constructed in this paper. All the four 2-designs have the 36 secants of a non-degenerate conic <math>\u0000 <sem","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"30 10","pages":"653-670"},"PeriodicalIF":0.7,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72192571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The spectrum for large sets of resolvable idempotent Latin squares 大集合可分解幂等拉丁平方的谱
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2022-07-27 DOI: 10.1002/jcd.21853
Xiangqian Li, Yanxun Chang
{"title":"The spectrum for large sets of resolvable idempotent Latin squares","authors":"Xiangqian Li, Yanxun Chang","doi":"10.1002/jcd.21853","DOIUrl":"https://doi.org/10.1002/jcd.21853","url":null,"abstract":"<p>An idempotent Latin square of order <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 </mrow>\u0000 <annotation> $v$</annotation>\u0000 </semantics></math> is called resolvable and denoted by RILS(<i>v</i>) if the <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $v(v-1)$</annotation>\u0000 </semantics></math> off-diagonal cells can be resolved into <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation> $v-1$</annotation>\u0000 </semantics></math> disjoint transversals. A large set of resolvable idempotent Latin squares of order <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 </mrow>\u0000 <annotation> $v$</annotation>\u0000 </semantics></math>, briefly LRILS(<i>v</i>), is a collection of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation> $v-2$</annotation>\u0000 </semantics></math> RILS(<i>v</i>)s pairwise agreeing on only the main diagonal. In this article, an LRILS(<i>v</i>) is constructed for <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 \u0000 <mo>∈</mo>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <mrow>\u0000 <mn>14</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>20</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>22</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>28</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>34</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>35</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>38</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>40</mn>\u0000 \u0000 <mo>,</mo>\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"30 10","pages":"671-683"},"PeriodicalIF":0.7,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72166526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The spectrum for large sets of resolvable idempotent Latin squares 可解幂等拉丁方大集合的谱
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2022-07-27 DOI: 10.1002/jcd.21853
Xiangqian Li, Yanxun Chang
{"title":"The spectrum for large sets of resolvable idempotent Latin squares","authors":"Xiangqian Li, Yanxun Chang","doi":"10.1002/jcd.21853","DOIUrl":"https://doi.org/10.1002/jcd.21853","url":null,"abstract":"An idempotent Latin square of order v $v$ is called resolvable and denoted by RILS(v) if the v(v − 1 ) $v(v-1)$ off‐diagonal cells can be resolved into v − 1 $v-1$ disjoint transversals. A large set of resolvable idempotent Latin squares of order v $v$ , briefly LRILS(v), is a collection of v − 2 $v-2$ RILS(v)s pairwise agreeing on only the main diagonal. In this article, an LRILS(v) is constructed for v ∈{14 , 20 , 22 , 28 , 34 , 35 , 38 , 40 , 42 , 46 , 50 , 55 , 62 } $vin {14,20,22,28,34,35,38,40,42,46,50,55,62}$ by using multiplier automorphism groups. Hence, there exists an LRILS(v) for any positive integer v ≥ 3 $vge 3$ , except v = 6 $v=6$ .","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"71 1","pages":"671 - 683"},"PeriodicalIF":0.7,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83991533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extended near Skolem sequences, Part III 扩展近Skolem序列,第三部分
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2022-07-25 DOI: 10.1002/jcd.21851
C. Baker, V. Linek, N. Shalaby
{"title":"Extended near Skolem sequences, Part III","authors":"C. Baker, V. Linek, N. Shalaby","doi":"10.1002/jcd.21851","DOIUrl":"https://doi.org/10.1002/jcd.21851","url":null,"abstract":"A k $k$ ‐extended q $q$ ‐near Skolem sequence of order n $n$ , denoted by Nnq(k) ${{mathscr{N}}}_{n}^{q}(k)$ , is a sequence s1,s2,…,s2n−1 ${s}_{1},{s}_{2},ldots ,{s}_{2n-1}$ where sk=0 ${s}_{k}=0$ and for each integer ℓ∈[1,n]{q} $ell in [1,n]backslash {q}$ there are two indices i $i$ , j $j$ such that si=sj=ℓ ${s}_{i}={s}_{j}=ell $ and ∣i−j∣=ℓ $| i-j| =ell $ . For an Nnq(k) ${{mathscr{N}}}_{n}^{q}(k)$ to exist it is necessary that q≡k(mod2) $qequiv k,(mathrm{mod},2)$ when n≡0,1(mod4) $nequiv 0,1,(mathrm{mod},4)$ and q≢k(mod2) $qnotequiv k,(mathrm{mod},2)$ when n≡2,3(mod4) $nequiv 2,3,(mathrm{mod},4)$ , where (n,q,k)≠(3,2,3) $(n,q,k)ne (3,2,3)$ , (4,2,4) $(4,2,4)$ . Any triple (n,q,k) $(n,q,k)$ satisfying these conditions is called admissible. In this manuscript, which is Part III of three manuscripts, we construct the remaining sequences; that is, Nnq(k) ${{mathscr{N}}}_{n}^{q}(k)$ for all admissible (n,q,k) $(n,q,k)$ with q∈⌊n+23⌋,⌊n−22⌋ $qin left[lfloor frac{n+2}{3}rfloor ,lfloor frac{n-2}{2}rfloor right]$ and k∈⌊2n3⌋,n−1 $kin left[lfloor frac{2n}{3}rfloor ,n-1right]$ .","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"80 1","pages":"637 - 652"},"PeriodicalIF":0.7,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81213966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Extended near Skolem sequences, Part III 扩展的近Skolem序列,第三部分
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2022-07-25 DOI: 10.1002/jcd.21851
Catharine A. Baker, Vaclav Linek, Nabil Shalaby
{"title":"Extended near Skolem sequences, Part III","authors":"Catharine A. Baker, Vaclav Linek, Nabil Shalaby","doi":"10.1002/jcd.21851","DOIUrl":"https://doi.org/10.1002/jcd.21851","url":null,"abstract":"<p>A <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-extended <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>q</mi>\u0000 </mrow>\u0000 <annotation> $q$</annotation>\u0000 </semantics></math>-near Skolem sequence of order <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>, denoted by <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>N</mi>\u0000 <mi>n</mi>\u0000 <mi>q</mi>\u0000 </msubsup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>k</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${{mathscr{N}}}_{n}^{q}(k)$</annotation>\u0000 </semantics></math>, is a sequence <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>s</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>s</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mtext>…</mtext>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>s</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>n</mi>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${s}_{1},{s}_{2},ldots ,{s}_{2n-1}$</annotation>\u0000 </semantics></math> where <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>s</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <mo>=</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation> ${s}_{k}=0$</annotation>\u0000 </semantics></math> and for each integer <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 <mo>∈</mo>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 <mo></mo>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <mi>q</mi>\u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $ell in [1,n]backslash {q}$</annotation>\u0000 </semantics></math> there are two indices <math>\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"30 10","pages":"637-652"},"PeriodicalIF":0.7,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72165250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Embedding in MDS codes and Latin cubes MDS代码和拉丁立方体中的嵌入
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2022-06-20 DOI: 10.1002/jcd.21849
Vladimir N. Potapov
{"title":"Embedding in MDS codes and Latin cubes","authors":"Vladimir N. Potapov","doi":"10.1002/jcd.21849","DOIUrl":"https://doi.org/10.1002/jcd.21849","url":null,"abstract":"<p>An embedding of a code is a mapping that preserves distances between codewords. We prove that any code with code distance <math>\u0000 <semantics>\u0000 \u0000 <mrow>\u0000 <mi>d</mi>\u0000 </mrow>\u0000 <annotation> $d$</annotation>\u0000 </semantics></math> and length <math>\u0000 <semantics>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math> can be embedded into an maximum distance separable (MDS) code with the same code distance and length but under a larger alphabet. As a corollary we obtain embeddings of systems of partial mutually orthogonal Latin cubes and <math>\u0000 <semantics>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>-ary quasigroups.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"30 9","pages":"626-633"},"PeriodicalIF":0.7,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72159165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Weak sequenceability in cyclic groups 环群的弱序列性
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2022-05-24 DOI: 10.1002/jcd.21862
Simone Costa, Stefano Della Fiore
{"title":"Weak sequenceability in cyclic groups","authors":"Simone Costa, Stefano Della Fiore","doi":"10.1002/jcd.21862","DOIUrl":"https://doi.org/10.1002/jcd.21862","url":null,"abstract":"A subset A $A$ of an abelian group G $G$ is sequenceable if there is an ordering ( a 1 , … , a k ) $({a}_{1},ldots ,{a}_{k})$ of its elements such that the partial sums ( s 0 , s 1 , … , s k ) $({s}_{0},{s}_{1},ldots ,{s}_{k})$ , given by s 0 = 0 ${s}_{0}=0$ and s i = ∑ j = 1 i a j ${s}_{i}={sum }_{j=1}^{i}{a}_{j}$ for 1 ≤ i ≤ k $1le ile k$ , are distinct, with the possible exception that we may have s k = s 0 = 0 ${s}_{k}={s}_{0}=0$ . In the literature there are several conjectures and questions concerning the sequenceability of subsets of abelian groups, which have been combined and summarized by Alspach and Liversidge into the conjecture that if a subset of an abelian group does not contain 0 then it is sequenceable. If the elements of a sequenceable set A $A$ do not sum to 0 then there exists a simple path P $P$ in the Cayley graph C a y [ G : ± A ] $Cay[G:pm A]$ such that Δ ( P ) = ± A ${rm{Delta }}(P)=pm A$ . In this paper, inspired by this graph–theoretical interpretation, we propose a weakening of this conjecture. Here, under the above assumptions, we want to find an ordering whose partial sums define a walk W $W$ of girth bigger than t $t$ (for a given t < k $tlt k$ ) and such that Δ ( W ) = ± A ${rm{Delta }}(W)=pm A$ . This is possible given that the partial sums s i ${s}_{i}$ and s j ${s}_{j}$ are different whenever i $i$ and j $j$ are distinct and ∣ i − j ∣ ≤ t $| i-j| le t$ . In this case, we say that the set A $A$ is t $t$ ‐weakly sequenceable. The main result here presented is that any subset A $A$ of Z p ⧹ { 0 } ${{mathbb{Z}}}_{p}setminus {0}$ is t $t$ ‐weakly sequenceable whenever t < 7 $tlt 7$ or when A $A$ does not contain pairs of type { x , − x } ${x,-x}$ and t < 8 $tlt 8$ .","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"4 1","pages":"735 - 751"},"PeriodicalIF":0.7,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87428608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
New infinite classes of 2-chromatic Steiner quadruple systems 新的无限类2-色Steiner四元系统
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2022-05-19 DOI: 10.1002/jcd.21845
Lijun Ji, Shuangqing Liu, Ye Yang
{"title":"New infinite classes of 2-chromatic Steiner quadruple systems","authors":"Lijun Ji,&nbsp;Shuangqing Liu,&nbsp;Ye Yang","doi":"10.1002/jcd.21845","DOIUrl":"https://doi.org/10.1002/jcd.21845","url":null,"abstract":"&lt;p&gt;In 1971, Doyen and Vandensavel gave a special doubling construction that gives a direct construction of 2-chromatic Steiner quadruple system of order &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $v$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; (SQS&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $(v)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;) for all &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;≡&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $vequiv 4$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; or &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;8&lt;/mn&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;mod&lt;/mi&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 \u0000 &lt;mn&gt;12&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $8,(mathrm{mod},12)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. The first author presented a construction for 2-chromatic SQSs based on 2-chromatic candelabra quadruple systems and &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $s$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-fan designs. In this paper, it is proved that a 2-chromatic SQS&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $(v)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; also exists if &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;≡&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;10&lt;/mn&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;mod&lt;/mi&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 \u0000 &lt;mn&gt;12&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"30 9","pages":"613-620"},"PeriodicalIF":0.7,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72190472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New infinite classes of 2‐chromatic Steiner quadruple systems 两色Steiner四重系的新无穷类
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2022-05-19 DOI: 10.1002/jcd.21845
L. Ji, Shuangqing Liu, Ye Yang
{"title":"New infinite classes of 2‐chromatic Steiner quadruple systems","authors":"L. Ji, Shuangqing Liu, Ye Yang","doi":"10.1002/jcd.21845","DOIUrl":"https://doi.org/10.1002/jcd.21845","url":null,"abstract":"In 1971, Doyen and Vandensavel gave a special doubling construction that gives a direct construction of 2‐chromatic Steiner quadruple system of order v $v$ (SQS ( v ) $(v)$ ) for all v ≡ 4 $vequiv 4$ or 8 ( mod 12 ) $8,(mathrm{mod},12)$ . The first author presented a construction for 2‐chromatic SQSs based on 2‐chromatic candelabra quadruple systems and s $s$ ‐fan designs. In this paper, it is proved that a 2‐chromatic SQS ( v ) $(v)$ also exists if v ≡ 10 ( mod 12 ) $vequiv 10,(mathrm{mod},12)$ , or if v ≡ 2 ( mod 24 ) $vequiv 2,(mathrm{mod},24)$ .","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"9 1","pages":"613 - 620"},"PeriodicalIF":0.7,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84180073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信