Journal of Combinatorial Designs最新文献

筛选
英文 中文
On an Assmus–Mattson type theorem for type I and even formally self-dual codes 关于I型甚至形式自对偶码的Assmus–Mattson型定理
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2023-04-17 DOI: 10.1002/jcd.21883
Tsuyoshi Miezaki, Hiroyuki Nakasora
{"title":"On an Assmus–Mattson type theorem for type I and even formally self-dual codes","authors":"Tsuyoshi Miezaki,&nbsp;Hiroyuki Nakasora","doi":"10.1002/jcd.21883","DOIUrl":"https://doi.org/10.1002/jcd.21883","url":null,"abstract":"<p>In the present paper, we give an Assmus–Mattson type theorem for near-extremal Type I and even formally self-dual codes. We show the existence of 1-designs or 2-designs for these codes. As a corollary, we prove the uniqueness of a self-orthogonal 2-<math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mn>16</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>6</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>8</mn>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation> $(16,6,8)$</annotation>\u0000 </semantics></math> design.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 7","pages":"335-344"},"PeriodicalIF":0.7,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50151560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Ordered covering arrays and upper bounds on covering codes 有序覆盖数组与覆盖码的上界
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2023-03-30 DOI: 10.1002/jcd.21882
André Guerino Castoldi, Emerson L. Monte Carmelo, Lucia Moura, Daniel Panario, Brett Stevens
{"title":"Ordered covering arrays and upper bounds on covering codes","authors":"André Guerino Castoldi,&nbsp;Emerson L. Monte Carmelo,&nbsp;Lucia Moura,&nbsp;Daniel Panario,&nbsp;Brett Stevens","doi":"10.1002/jcd.21882","DOIUrl":"https://doi.org/10.1002/jcd.21882","url":null,"abstract":"<p>This work shows several direct and recursive constructions of ordered covering arrays (OCAs) using projection, fusion, column augmentation, derivation, concatenation, and Cartesian product. Upper bounds on covering codes in Niederreiter–Rosenbloom–Tsfasman (shorten by NRT) spaces are also obtained by improving a general upper bound. We explore the connection between ordered covering arrays and covering codes in NRT spaces, which generalize similar results for the Hamming metric. Combining the new upper bounds for covering codes in NRT spaces and ordered covering arrays, we improve upper bounds on covering codes in NRT spaces for larger alphabets. We give tables comparing the new upper bounds for covering codes to existing ones.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 6","pages":"304-329"},"PeriodicalIF":0.7,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50148437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The existence of λ $lambda $ -decomposable super-simple ( 4 , 2 λ ) $(4,2lambda )$ -GDDs of type g u ${g}^{u}$ with λ = 2 , 4 $lambda =2,4$ λ$lambda$-可分解超简单(4,2λ)$(4,2lambda)$-GDD的存在性类型g u${g}^{u}$,λ=2,4$lambda=2,4$
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2023-03-30 DOI: 10.1002/jcd.21881
Huangsheng Yu, Jingyuan Chen, R. Julian R. Abel, Dianhua Wu
{"title":"The existence of \u0000 \u0000 \u0000 λ\u0000 \u0000 $lambda $\u0000 -decomposable super-simple \u0000 \u0000 \u0000 \u0000 (\u0000 \u0000 4\u0000 ,\u0000 2\u0000 λ\u0000 \u0000 )\u0000 \u0000 \u0000 $(4,2lambda )$\u0000 -GDDs of type \u0000 \u0000 \u0000 \u0000 g\u0000 u\u0000 \u0000 \u0000 ${g}^{u}$\u0000 with \u0000 \u0000 \u0000 λ\u0000 =\u0000 2\u0000 ,\u0000 4\u0000 \u0000 $lambda =2,4$","authors":"Huangsheng Yu,&nbsp;Jingyuan Chen,&nbsp;R. Julian R. Abel,&nbsp;Dianhua Wu","doi":"10.1002/jcd.21881","DOIUrl":"https://doi.org/10.1002/jcd.21881","url":null,"abstract":"<p>A design is said to be <i>super-simple</i> if the intersection of any two of its blocks has at most two elements. A design with index <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mi>λ</mi>\u0000 </mrow>\u0000 <annotation> $tlambda $</annotation>\u0000 </semantics></math> is said to be <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 </mrow>\u0000 <annotation> $lambda $</annotation>\u0000 </semantics></math>-<i>decomposable</i>, if its blocks can be partitioned into nonempty collections <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>ℬ</mi>\u0000 <mi>i</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${{rm{ {mathcal B} }}}_{i}$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>≤</mo>\u0000 <mi>i</mi>\u0000 <mo>≤</mo>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $1le ile t$</annotation>\u0000 </semantics></math>, such that each <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>ℬ</mi>\u0000 <mi>i</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${{rm{ {mathcal B} }}}_{i}$</annotation>\u0000 </semantics></math> with the point set forms a design with index <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 </mrow>\u0000 <annotation> $lambda $</annotation>\u0000 </semantics></math>. In this paper, it is proved that for <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 <mo>∈</mo>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mo>,</mo>\u0000 <mn>4</mn>\u0000 </mrow>\u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $lambda in {2,4}$</annotation>\u0000 </semantics></math>, there exists a <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 </mrow>\u0000 <annotation> $lambda $</annotation>\u0000 </semantics></math>-decomposable super-simple <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mn>4</mn>\u0000 <mo>,</mo>\u0000 <mn>2</mn>\u0000 <mi>λ</mi>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $(4,2lambda )$</annotation>\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 6","pages":"289-303"},"PeriodicalIF":0.7,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50148436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards the Ryser–Woodall λ $lambda $ -design conjecture Ryser–Woodallλ$lambda$设计猜想
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2023-02-26 DOI: 10.1002/jcd.21878
Navin M. Singhi, Mohan S. Shrikhande, Rajendra M. Pawale
{"title":"Towards the Ryser–Woodall \u0000 \u0000 \u0000 λ\u0000 \u0000 $lambda $\u0000 -design conjecture","authors":"Navin M. Singhi,&nbsp;Mohan S. Shrikhande,&nbsp;Rajendra M. Pawale","doi":"10.1002/jcd.21878","DOIUrl":"https://doi.org/10.1002/jcd.21878","url":null,"abstract":"&lt;p&gt;Let &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${r}_{1}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${r}_{2},({r}_{1}gt {r}_{2})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be the two replication numbers of a &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $lambda $&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-design &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $D$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. We denote the block size &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;∣&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;j&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;∣&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $| {B}_{j}| $&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; by &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;j&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${k}_{j}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and by &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;j&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;′&lt;/mo&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${k}_{j}^{^{prime} }$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; (respectively, &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 \u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 5","pages":"267-276"},"PeriodicalIF":0.7,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50144158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alternating groups and point-primitive linear spaces with number of points being squarefree 交替群与点数为平方的点基元线性空间
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2023-02-26 DOI: 10.1002/jcd.21879
Haiyan Guan, Shenglin Zhou
{"title":"Alternating groups and point-primitive linear spaces with number of points being squarefree","authors":"Haiyan Guan,&nbsp;Shenglin Zhou","doi":"10.1002/jcd.21879","DOIUrl":"https://doi.org/10.1002/jcd.21879","url":null,"abstract":"<p>This paper is a further contribution to the classification of point-primitive finite regular linear spaces. Let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{S}}$</annotation>\u0000 </semantics></math> be a nontrivial finite regular linear space whose number of points <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 </mrow>\u0000 <annotation> $v$</annotation>\u0000 </semantics></math> is squarefree. We prove that if <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 <mo>≤</mo>\u0000 <mtext>Aut</mtext>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>S</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $Gle text{Aut}({mathscr{S}})$</annotation>\u0000 </semantics></math> is point-primitive with an alternating socle, then <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{S}}$</annotation>\u0000 </semantics></math> is the projective space <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mtext>PG</mtext>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mn>3</mn>\u0000 <mo>,</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $text{PG}(3,2)$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 5","pages":"277-286"},"PeriodicalIF":0.7,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50144159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the chromatic number of some generalized Kneser graphs 关于一些广义Kneer图的色数
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2023-02-10 DOI: 10.1002/jcd.21875
Jozefien D'haeseleer, Klaus Metsch, Daniel Werner
{"title":"On the chromatic number of some generalized Kneser graphs","authors":"Jozefien D'haeseleer,&nbsp;Klaus Metsch,&nbsp;Daniel Werner","doi":"10.1002/jcd.21875","DOIUrl":"https://doi.org/10.1002/jcd.21875","url":null,"abstract":"<p>We determine the chromatic number of the Kneser graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>q</mi>\u0000 \u0000 <msub>\u0000 <mi>Γ</mi>\u0000 <mrow>\u0000 <mn>7</mn>\u0000 \u0000 <mo>,</mo>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <mrow>\u0000 <mn>3</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>4</mn>\u0000 </mrow>\u0000 \u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> $q{{rm{Gamma }}}_{7,{3,4}}$</annotation>\u0000 </semantics></math> of flags of vectorial type <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <mrow>\u0000 <mn>3</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>4</mn>\u0000 </mrow>\u0000 \u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${3,4}$</annotation>\u0000 </semantics></math> of a rank 7 vector space over the finite field <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>GF</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>q</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $mathrm{GF}(q)$</annotation>\u0000 </semantics></math> for large <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>q</mi>\u0000 </mrow>\u0000 <annotation> $q$</annotation>\u0000 </semantics></math> and describe the colorings that attain the bound. This result relies heavily, not only on the independence number, but also on the structure of all <i>large</i> independent sets. Furthermore, our proof is more general in the following sense: it provides the chromatic number of the Kneser graphs <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>q</mi>\u0000 \u0000 <msub>\u0000 <mi>Γ</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>d</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</mn>\u0000 \u0000 <mo>,</mo>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 4","pages":"179-204"},"PeriodicalIF":0.7,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50127549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Balanced covering arrays: A classification of covering arrays and packing arrays via exact methods 平衡覆盖阵列:通过精确方法对覆盖阵列和填充阵列进行分类
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2023-02-05 DOI: 10.1002/jcd.21876
Ludwig Kampel, Irene Hiess, Ilias S. Kotsireas, Dimitris E. Simos
{"title":"Balanced covering arrays: A classification of covering arrays and packing arrays via exact methods","authors":"Ludwig Kampel,&nbsp;Irene Hiess,&nbsp;Ilias S. Kotsireas,&nbsp;Dimitris E. Simos","doi":"10.1002/jcd.21876","DOIUrl":"https://doi.org/10.1002/jcd.21876","url":null,"abstract":"<p>In this paper we investigate the intersections of classes of covering arrays (CAs) and packing arrays (PAs). The arrays appearing in these intersections obey to upper and lower bounds regarding the appearance of tuples in sub-matrices—we call these arrays <i>balanced covering arrays</i>. We formulate and formalize first observations for which upper and lower bounds on the appearance of tuples it is of interest to consider these intersections of CAs and PAs. Outside of these bounds the intersections will be either empty, for the case of too restrictive constraints, or equal to the maximum element in the emerging lattices, for the case of too weak constraints. We present a column extension algorithm for classification of nonequivalent balanced CAs that uses a SAT solver or a pseudo-Boolean (PB) solver to compute the columns suitable for array extension together with a lex-leader ordering to identify unique representatives for each equivalence class of balanced CAs. These computations bring to light a dissection of classes of CAs that is partially nested due to the nature of the considered intersections. These dissections can be trivial, containing only a single type of balanced CAs, or can also appear as highly structured containing multiple nested types of balanced CAs. Our results indicate that balanced CAs are an interesting class of designs that is rich of structure.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 4","pages":"205-261"},"PeriodicalIF":0.7,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50121488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The maximum number of columns in E ( s 2 ) $,E({s}^{2})$ -optimal supersaturated designs with 16 rows and s max = 4 ${s}_{{rm{max }}}=4$ is 60 E(s 2)$中的最大列数,E({s}^{2})$—具有16行且s最大=4的最优过饱和设计${s}_{{rm}}=4$等于60
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2023-01-09 DOI: 10.1002/jcd.21873
Luis B. Morales
{"title":"The maximum number of columns in \u0000 \u0000 \u0000 \u0000 E\u0000 \u0000 (\u0000 \u0000 s\u0000 2\u0000 \u0000 )\u0000 \u0000 \u0000 $,E({s}^{2})$\u0000 -optimal supersaturated designs with 16 rows and \u0000 \u0000 \u0000 \u0000 s\u0000 max\u0000 \u0000 =\u0000 4\u0000 \u0000 ${s}_{{rm{max }}}=4$\u0000 is 60","authors":"Luis B. Morales","doi":"10.1002/jcd.21873","DOIUrl":"https://doi.org/10.1002/jcd.21873","url":null,"abstract":"<p>We show that the maximum number of columns in <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mspace></mspace>\u0000 <mi>E</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>s</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $,E({s}^{2})$</annotation>\u0000 </semantics></math>-optimal supersaturated designs (SSDs) with 16 rows and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>s</mi>\u0000 <mi>max</mi>\u0000 </msub>\u0000 <mo>=</mo>\u0000 <mn>4</mn>\u0000 </mrow>\u0000 <annotation> ${s}_{{rm{max }}}=4$</annotation>\u0000 </semantics></math> is 60 by showing that there exists no resolvable 2-(16, 8, 35) design such that any two blocks from different parallel classes intersect in 3, 5, or 4 points. This is accomplished by an exhaustive computer search that uses the parallel class intersection pattern method to reduce the search space. We also classify all nonisomorphic <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mspace></mspace>\u0000 <mi>E</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>s</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $,E({s}^{2})$</annotation>\u0000 </semantics></math>-optimal 5-circulant SSDs with 16 rows and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>s</mi>\u0000 <mi>max</mi>\u0000 </msub>\u0000 <mo>=</mo>\u0000 <mn>8</mn>\u0000 </mrow>\u0000 <annotation> ${s}_{{rm{max }}}=8$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 4","pages":"165-178"},"PeriodicalIF":0.7,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50143087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Euclidean designs obtained from spherical embedding of coherent configurations 相干配置球面嵌入的欧氏设计
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2022-12-19 DOI: 10.1002/jcd.21871
Aiguo Wang, Yan Zhu
{"title":"Euclidean designs obtained from spherical embedding of coherent configurations","authors":"Aiguo Wang,&nbsp;Yan Zhu","doi":"10.1002/jcd.21871","DOIUrl":"https://doi.org/10.1002/jcd.21871","url":null,"abstract":"<p>Coherent configurations are a generalization of association schemes. Motivated by the recent study of <i>Q</i>-polynomial coherent configurations, in this paper, we study the spherical embedding of a <i>Q</i>-polynomial coherent configuration into some eigenspace by a primitive idempotent. We present a necessary and sufficient condition when the embedding becomes a Euclidean <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $t$</annotation>\u0000 </semantics></math>-design (on two concentric spheres) in terms of the Krein numbers for <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 \u0000 <mo>≤</mo>\u0000 \u0000 <mn>4</mn>\u0000 </mrow>\u0000 <annotation> $tle 4$</annotation>\u0000 </semantics></math>. In addition, we obtain some Euclidean 2- or 3-designs from spherical embedding of coherent configurations including tight relative 4- or 5-designs in binary Hamming schemes and the union of derived designs of a tight 4-design in Hamming schemes.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 3","pages":"143-161"},"PeriodicalIF":0.7,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50137509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the equivalence of certain quasi-Hermitian varieties 关于某些拟Hermitian变种的等价性
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2022-12-07 DOI: 10.1002/jcd.21870
Angela Aguglia, Luca Giuzzi
{"title":"On the equivalence of certain quasi-Hermitian varieties","authors":"Angela Aguglia,&nbsp;Luca Giuzzi","doi":"10.1002/jcd.21870","DOIUrl":"https://doi.org/10.1002/jcd.21870","url":null,"abstract":"&lt;p&gt;By Aguglia et al., new quasi-Hermitian varieties &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;ℳ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;β&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${{rm{ {mathcal M} }}}_{alpha ,beta }$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; in &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;PG&lt;/mtext&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $text{PG}(r,{q}^{2})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; depending on a pair of parameters &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;β&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $alpha ,beta $&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; from the underlying field &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;GF&lt;/mtext&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $text{GF}({q}^{2})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; have been constructed. In the present paper we study the structure of the lines contained in &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;ℳ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;β&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${{rm{ {mathcal M} }}}_{alpha ,beta }$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and consequently determine the projective equivalence classes of such varieties for &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $q$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; odd and &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $r=3$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. As a byproduct, we also prove that the collinearity graph of &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 2","pages":"124-138"},"PeriodicalIF":0.7,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50123664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信