{"title":"On an Assmus–Mattson type theorem for type I and even formally self-dual codes","authors":"Tsuyoshi Miezaki, Hiroyuki Nakasora","doi":"10.1002/jcd.21883","DOIUrl":"https://doi.org/10.1002/jcd.21883","url":null,"abstract":"<p>In the present paper, we give an Assmus–Mattson type theorem for near-extremal Type I and even formally self-dual codes. We show the existence of 1-designs or 2-designs for these codes. As a corollary, we prove the uniqueness of a self-orthogonal 2-<math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mn>16</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>6</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>8</mn>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation> $(16,6,8)$</annotation>\u0000 </semantics></math> design.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 7","pages":"335-344"},"PeriodicalIF":0.7,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50151560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
André Guerino Castoldi, Emerson L. Monte Carmelo, Lucia Moura, Daniel Panario, Brett Stevens
{"title":"Ordered covering arrays and upper bounds on covering codes","authors":"André Guerino Castoldi, Emerson L. Monte Carmelo, Lucia Moura, Daniel Panario, Brett Stevens","doi":"10.1002/jcd.21882","DOIUrl":"https://doi.org/10.1002/jcd.21882","url":null,"abstract":"<p>This work shows several direct and recursive constructions of ordered covering arrays (OCAs) using projection, fusion, column augmentation, derivation, concatenation, and Cartesian product. Upper bounds on covering codes in Niederreiter–Rosenbloom–Tsfasman (shorten by NRT) spaces are also obtained by improving a general upper bound. We explore the connection between ordered covering arrays and covering codes in NRT spaces, which generalize similar results for the Hamming metric. Combining the new upper bounds for covering codes in NRT spaces and ordered covering arrays, we improve upper bounds on covering codes in NRT spaces for larger alphabets. We give tables comparing the new upper bounds for covering codes to existing ones.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 6","pages":"304-329"},"PeriodicalIF":0.7,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50148437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huangsheng Yu, Jingyuan Chen, R. Julian R. Abel, Dianhua Wu
{"title":"The existence of \u0000 \u0000 \u0000 λ\u0000 \u0000 $lambda $\u0000 -decomposable super-simple \u0000 \u0000 \u0000 \u0000 (\u0000 \u0000 4\u0000 ,\u0000 2\u0000 λ\u0000 \u0000 )\u0000 \u0000 \u0000 $(4,2lambda )$\u0000 -GDDs of type \u0000 \u0000 \u0000 \u0000 g\u0000 u\u0000 \u0000 \u0000 ${g}^{u}$\u0000 with \u0000 \u0000 \u0000 λ\u0000 =\u0000 2\u0000 ,\u0000 4\u0000 \u0000 $lambda =2,4$","authors":"Huangsheng Yu, Jingyuan Chen, R. Julian R. Abel, Dianhua Wu","doi":"10.1002/jcd.21881","DOIUrl":"https://doi.org/10.1002/jcd.21881","url":null,"abstract":"<p>A design is said to be <i>super-simple</i> if the intersection of any two of its blocks has at most two elements. A design with index <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mi>λ</mi>\u0000 </mrow>\u0000 <annotation> $tlambda $</annotation>\u0000 </semantics></math> is said to be <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 </mrow>\u0000 <annotation> $lambda $</annotation>\u0000 </semantics></math>-<i>decomposable</i>, if its blocks can be partitioned into nonempty collections <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>ℬ</mi>\u0000 <mi>i</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${{rm{ {mathcal B} }}}_{i}$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>≤</mo>\u0000 <mi>i</mi>\u0000 <mo>≤</mo>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $1le ile t$</annotation>\u0000 </semantics></math>, such that each <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>ℬ</mi>\u0000 <mi>i</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${{rm{ {mathcal B} }}}_{i}$</annotation>\u0000 </semantics></math> with the point set forms a design with index <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 </mrow>\u0000 <annotation> $lambda $</annotation>\u0000 </semantics></math>. In this paper, it is proved that for <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 <mo>∈</mo>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mo>,</mo>\u0000 <mn>4</mn>\u0000 </mrow>\u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $lambda in {2,4}$</annotation>\u0000 </semantics></math>, there exists a <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 </mrow>\u0000 <annotation> $lambda $</annotation>\u0000 </semantics></math>-decomposable super-simple <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mn>4</mn>\u0000 <mo>,</mo>\u0000 <mn>2</mn>\u0000 <mi>λ</mi>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $(4,2lambda )$</annotation>\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 6","pages":"289-303"},"PeriodicalIF":0.7,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50148436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}