Navin M. Singhi, Mohan S. Shrikhande, Rajendra M. Pawale
求助PDF
{"title":"Ryser–Woodallλ$\\lambda$设计猜想","authors":"Navin M. Singhi, Mohan S. Shrikhande, Rajendra M. Pawale","doi":"10.1002/jcd.21878","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${r}_{1}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>,</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>r</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>></mo>\n \n <msub>\n <mi>r</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${r}_{2},({r}_{1}\\gt {r}_{2})$</annotation>\n </semantics></math> be the two replication numbers of a <math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <annotation> $\\lambda $</annotation>\n </semantics></math>-design <math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math>. We denote the block size <math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n \n <msub>\n <mi>B</mi>\n \n <mi>j</mi>\n </msub>\n \n <mo>∣</mo>\n </mrow>\n <annotation> $| {B}_{j}| $</annotation>\n </semantics></math> by <math>\n <semantics>\n <mrow>\n <msub>\n <mi>k</mi>\n \n <mi>j</mi>\n </msub>\n </mrow>\n <annotation> ${k}_{j}$</annotation>\n </semantics></math> and by <math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>k</mi>\n \n <mi>j</mi>\n \n <mo>′</mo>\n </msubsup>\n </mrow>\n <annotation> ${k}_{j}^{^{\\prime} }$</annotation>\n </semantics></math> (respectively, <math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>k</mi>\n \n <mi>j</mi>\n \n <mo>*</mo>\n </msubsup>\n </mrow>\n <annotation> ${k}_{j}^{* }$</annotation>\n </semantics></math>) the number of points with replication number <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${r}_{1}$</annotation>\n </semantics></math> (respectively, <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${r}_{2}$</annotation>\n </semantics></math>) in block <math>\n <semantics>\n <mrow>\n <msub>\n <mi>B</mi>\n \n <mi>j</mi>\n </msub>\n </mrow>\n <annotation> ${B}_{j}$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math>. Take <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n \n <mo>=</mo>\n \n <mtext>gcd</mtext>\n \n <mfenced>\n <mrow>\n <mfrac>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>−</mo>\n \n <msub>\n <mi>r</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mrow>\n <mtext>gcd</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>r</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <msub>\n <mi>r</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mfrac>\n \n <mo>,</mo>\n \n <mi>λ</mi>\n </mrow>\n </mfenced>\n \n <mo>,</mo>\n \n <mi>λ</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>λ</mi>\n \n <mn>1</mn>\n </msub>\n \n <mi>g</mi>\n \n <mo>,</mo>\n \n <mfrac>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>−</mo>\n \n <msub>\n <mi>r</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mrow>\n <mtext>gcd</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>r</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <msub>\n <mi>r</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mfrac>\n \n <mo>=</mo>\n \n <mi>g</mi>\n \n <mi>m</mi>\n </mrow>\n <annotation> $g=\\text{gcd}\\left(\\frac{{r}_{1}-{r}_{2}}{\\text{gcd}({r}_{1}-1,{r}_{2}-1)},\\lambda \\right),\\lambda ={\\lambda }_{1}g,\\frac{{r}_{1}-{r}_{2}}{\\text{gcd}({r}_{1}-1,{r}_{2}-1)}=gm$</annotation>\n </semantics></math>, for positive integers <math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>m</mi>\n </mrow>\n <annotation> ${\\lambda }_{1},m$</annotation>\n </semantics></math> and let <math>\n <semantics>\n <mrow>\n <msub>\n <mi>g</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${g}_{1}$</annotation>\n </semantics></math> be the largest divisor of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\lambda }_{1}$</annotation>\n </semantics></math> such that if <math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation> $p$</annotation>\n </semantics></math> is a prime dividing <math>\n <semantics>\n <mrow>\n <msub>\n <mi>g</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${g}_{1}$</annotation>\n </semantics></math>, then <math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation> $p$</annotation>\n </semantics></math> divides <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n </mrow>\n <annotation> $g$</annotation>\n </semantics></math>. We obtain the following results:\n\n </p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 5","pages":"267-276"},"PeriodicalIF":0.5000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards the Ryser–Woodall \\n \\n \\n λ\\n \\n $\\\\lambda $\\n -design conjecture\",\"authors\":\"Navin M. Singhi, Mohan S. Shrikhande, Rajendra M. Pawale\",\"doi\":\"10.1002/jcd.21878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation> ${r}_{1}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>></mo>\\n \\n <msub>\\n <mi>r</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${r}_{2},({r}_{1}\\\\gt {r}_{2})$</annotation>\\n </semantics></math> be the two replication numbers of a <math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n </mrow>\\n <annotation> $\\\\lambda $</annotation>\\n </semantics></math>-design <math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <annotation> $D$</annotation>\\n </semantics></math>. We denote the block size <math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n \\n <msub>\\n <mi>B</mi>\\n \\n <mi>j</mi>\\n </msub>\\n \\n <mo>∣</mo>\\n </mrow>\\n <annotation> $| {B}_{j}| $</annotation>\\n </semantics></math> by <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>k</mi>\\n \\n <mi>j</mi>\\n </msub>\\n </mrow>\\n <annotation> ${k}_{j}$</annotation>\\n </semantics></math> and by <math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>k</mi>\\n \\n <mi>j</mi>\\n \\n <mo>′</mo>\\n </msubsup>\\n </mrow>\\n <annotation> ${k}_{j}^{^{\\\\prime} }$</annotation>\\n </semantics></math> (respectively, <math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>k</mi>\\n \\n <mi>j</mi>\\n \\n <mo>*</mo>\\n </msubsup>\\n </mrow>\\n <annotation> ${k}_{j}^{* }$</annotation>\\n </semantics></math>) the number of points with replication number <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation> ${r}_{1}$</annotation>\\n </semantics></math> (respectively, <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${r}_{2}$</annotation>\\n </semantics></math>) in block <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>B</mi>\\n \\n <mi>j</mi>\\n </msub>\\n </mrow>\\n <annotation> ${B}_{j}$</annotation>\\n </semantics></math> of <math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <annotation> $D$</annotation>\\n </semantics></math>. Take <math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n \\n <mo>=</mo>\\n \\n <mtext>gcd</mtext>\\n \\n <mfenced>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <msub>\\n <mi>r</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n \\n <mrow>\\n <mtext>gcd</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>r</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mfrac>\\n \\n <mo>,</mo>\\n \\n <mi>λ</mi>\\n </mrow>\\n </mfenced>\\n \\n <mo>,</mo>\\n \\n <mi>λ</mi>\\n \\n <mo>=</mo>\\n \\n <msub>\\n <mi>λ</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mi>g</mi>\\n \\n <mo>,</mo>\\n \\n <mfrac>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <msub>\\n <mi>r</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n \\n <mrow>\\n <mtext>gcd</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>r</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mfrac>\\n \\n <mo>=</mo>\\n \\n <mi>g</mi>\\n \\n <mi>m</mi>\\n </mrow>\\n <annotation> $g=\\\\text{gcd}\\\\left(\\\\frac{{r}_{1}-{r}_{2}}{\\\\text{gcd}({r}_{1}-1,{r}_{2}-1)},\\\\lambda \\\\right),\\\\lambda ={\\\\lambda }_{1}g,\\\\frac{{r}_{1}-{r}_{2}}{\\\\text{gcd}({r}_{1}-1,{r}_{2}-1)}=gm$</annotation>\\n </semantics></math>, for positive integers <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>λ</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>m</mi>\\n </mrow>\\n <annotation> ${\\\\lambda }_{1},m$</annotation>\\n </semantics></math> and let <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>g</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation> ${g}_{1}$</annotation>\\n </semantics></math> be the largest divisor of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>λ</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\lambda }_{1}$</annotation>\\n </semantics></math> such that if <math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <annotation> $p$</annotation>\\n </semantics></math> is a prime dividing <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>g</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation> ${g}_{1}$</annotation>\\n </semantics></math>, then <math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <annotation> $p$</annotation>\\n </semantics></math> divides <math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n </mrow>\\n <annotation> $g$</annotation>\\n </semantics></math>. We obtain the following results:\\n\\n </p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"31 5\",\"pages\":\"267-276\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21878\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21878","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用