Ryser–Woodallλ$\lambda$设计猜想

IF 0.5 4区 数学 Q3 MATHEMATICS
Navin M. Singhi, Mohan S. Shrikhande, Rajendra M. Pawale
{"title":"Ryser–Woodallλ$\\lambda$设计猜想","authors":"Navin M. Singhi,&nbsp;Mohan S. Shrikhande,&nbsp;Rajendra M. Pawale","doi":"10.1002/jcd.21878","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${r}_{1}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>,</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>r</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>&gt;</mo>\n \n <msub>\n <mi>r</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${r}_{2},({r}_{1}\\gt {r}_{2})$</annotation>\n </semantics></math> be the two replication numbers of a <math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <annotation> $\\lambda $</annotation>\n </semantics></math>-design <math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math>. We denote the block size <math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n \n <msub>\n <mi>B</mi>\n \n <mi>j</mi>\n </msub>\n \n <mo>∣</mo>\n </mrow>\n <annotation> $| {B}_{j}| $</annotation>\n </semantics></math> by <math>\n <semantics>\n <mrow>\n <msub>\n <mi>k</mi>\n \n <mi>j</mi>\n </msub>\n </mrow>\n <annotation> ${k}_{j}$</annotation>\n </semantics></math> and by <math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>k</mi>\n \n <mi>j</mi>\n \n <mo>′</mo>\n </msubsup>\n </mrow>\n <annotation> ${k}_{j}^{^{\\prime} }$</annotation>\n </semantics></math> (respectively, <math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>k</mi>\n \n <mi>j</mi>\n \n <mo>*</mo>\n </msubsup>\n </mrow>\n <annotation> ${k}_{j}^{* }$</annotation>\n </semantics></math>) the number of points with replication number <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${r}_{1}$</annotation>\n </semantics></math> (respectively, <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${r}_{2}$</annotation>\n </semantics></math>) in block <math>\n <semantics>\n <mrow>\n <msub>\n <mi>B</mi>\n \n <mi>j</mi>\n </msub>\n </mrow>\n <annotation> ${B}_{j}$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math>. Take <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n \n <mo>=</mo>\n \n <mtext>gcd</mtext>\n \n <mfenced>\n <mrow>\n <mfrac>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>−</mo>\n \n <msub>\n <mi>r</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mrow>\n <mtext>gcd</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>r</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <msub>\n <mi>r</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mfrac>\n \n <mo>,</mo>\n \n <mi>λ</mi>\n </mrow>\n </mfenced>\n \n <mo>,</mo>\n \n <mi>λ</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>λ</mi>\n \n <mn>1</mn>\n </msub>\n \n <mi>g</mi>\n \n <mo>,</mo>\n \n <mfrac>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>−</mo>\n \n <msub>\n <mi>r</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mrow>\n <mtext>gcd</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>r</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <msub>\n <mi>r</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mfrac>\n \n <mo>=</mo>\n \n <mi>g</mi>\n \n <mi>m</mi>\n </mrow>\n <annotation> $g=\\text{gcd}\\left(\\frac{{r}_{1}-{r}_{2}}{\\text{gcd}({r}_{1}-1,{r}_{2}-1)},\\lambda \\right),\\lambda ={\\lambda }_{1}g,\\frac{{r}_{1}-{r}_{2}}{\\text{gcd}({r}_{1}-1,{r}_{2}-1)}=gm$</annotation>\n </semantics></math>, for positive integers <math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>m</mi>\n </mrow>\n <annotation> ${\\lambda }_{1},m$</annotation>\n </semantics></math> and let <math>\n <semantics>\n <mrow>\n <msub>\n <mi>g</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${g}_{1}$</annotation>\n </semantics></math> be the largest divisor of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\lambda }_{1}$</annotation>\n </semantics></math> such that if <math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation> $p$</annotation>\n </semantics></math> is a prime dividing <math>\n <semantics>\n <mrow>\n <msub>\n <mi>g</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${g}_{1}$</annotation>\n </semantics></math>, then <math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation> $p$</annotation>\n </semantics></math> divides <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n </mrow>\n <annotation> $g$</annotation>\n </semantics></math>. We obtain the following results:\n\n </p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 5","pages":"267-276"},"PeriodicalIF":0.5000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards the Ryser–Woodall \\n \\n \\n λ\\n \\n $\\\\lambda $\\n -design conjecture\",\"authors\":\"Navin M. Singhi,&nbsp;Mohan S. Shrikhande,&nbsp;Rajendra M. Pawale\",\"doi\":\"10.1002/jcd.21878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation> ${r}_{1}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>&gt;</mo>\\n \\n <msub>\\n <mi>r</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${r}_{2},({r}_{1}\\\\gt {r}_{2})$</annotation>\\n </semantics></math> be the two replication numbers of a <math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n </mrow>\\n <annotation> $\\\\lambda $</annotation>\\n </semantics></math>-design <math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <annotation> $D$</annotation>\\n </semantics></math>. We denote the block size <math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n \\n <msub>\\n <mi>B</mi>\\n \\n <mi>j</mi>\\n </msub>\\n \\n <mo>∣</mo>\\n </mrow>\\n <annotation> $| {B}_{j}| $</annotation>\\n </semantics></math> by <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>k</mi>\\n \\n <mi>j</mi>\\n </msub>\\n </mrow>\\n <annotation> ${k}_{j}$</annotation>\\n </semantics></math> and by <math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>k</mi>\\n \\n <mi>j</mi>\\n \\n <mo>′</mo>\\n </msubsup>\\n </mrow>\\n <annotation> ${k}_{j}^{^{\\\\prime} }$</annotation>\\n </semantics></math> (respectively, <math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>k</mi>\\n \\n <mi>j</mi>\\n \\n <mo>*</mo>\\n </msubsup>\\n </mrow>\\n <annotation> ${k}_{j}^{* }$</annotation>\\n </semantics></math>) the number of points with replication number <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation> ${r}_{1}$</annotation>\\n </semantics></math> (respectively, <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${r}_{2}$</annotation>\\n </semantics></math>) in block <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>B</mi>\\n \\n <mi>j</mi>\\n </msub>\\n </mrow>\\n <annotation> ${B}_{j}$</annotation>\\n </semantics></math> of <math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <annotation> $D$</annotation>\\n </semantics></math>. Take <math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n \\n <mo>=</mo>\\n \\n <mtext>gcd</mtext>\\n \\n <mfenced>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <msub>\\n <mi>r</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n \\n <mrow>\\n <mtext>gcd</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>r</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mfrac>\\n \\n <mo>,</mo>\\n \\n <mi>λ</mi>\\n </mrow>\\n </mfenced>\\n \\n <mo>,</mo>\\n \\n <mi>λ</mi>\\n \\n <mo>=</mo>\\n \\n <msub>\\n <mi>λ</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mi>g</mi>\\n \\n <mo>,</mo>\\n \\n <mfrac>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <msub>\\n <mi>r</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n \\n <mrow>\\n <mtext>gcd</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>r</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mfrac>\\n \\n <mo>=</mo>\\n \\n <mi>g</mi>\\n \\n <mi>m</mi>\\n </mrow>\\n <annotation> $g=\\\\text{gcd}\\\\left(\\\\frac{{r}_{1}-{r}_{2}}{\\\\text{gcd}({r}_{1}-1,{r}_{2}-1)},\\\\lambda \\\\right),\\\\lambda ={\\\\lambda }_{1}g,\\\\frac{{r}_{1}-{r}_{2}}{\\\\text{gcd}({r}_{1}-1,{r}_{2}-1)}=gm$</annotation>\\n </semantics></math>, for positive integers <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>λ</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>m</mi>\\n </mrow>\\n <annotation> ${\\\\lambda }_{1},m$</annotation>\\n </semantics></math> and let <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>g</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation> ${g}_{1}$</annotation>\\n </semantics></math> be the largest divisor of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>λ</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\lambda }_{1}$</annotation>\\n </semantics></math> such that if <math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <annotation> $p$</annotation>\\n </semantics></math> is a prime dividing <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>g</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation> ${g}_{1}$</annotation>\\n </semantics></math>, then <math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <annotation> $p$</annotation>\\n </semantics></math> divides <math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n </mrow>\\n <annotation> $g$</annotation>\\n </semantics></math>. We obtain the following results:\\n\\n </p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"31 5\",\"pages\":\"267-276\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21878\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21878","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设r 1${r}_{1} $和r2,(r1&gt;r2)${r}_{2} ({r}_{1} \gt{r}_{2} )$是λ$\lambda$设计D$D$的两个复制数。我们表示块大小ŞBjŞ$|{B}_{j} |$by kj${k}_{j} $和by k j′${k}_{j} ^{^{\prime}}$(分别为kj*${k}_{j} ^{*}$)复制编号为r 1的点数${r}_{1} $(分别,r 2${r}_{2} $)${B}_{j} $$D$D$。取g=gcd r 1−r 2 gcd(r 1−1.r 2−1),λ,λ= 设r 1${r}_{1} $和r2,(r1&gt;r2)${r}_{2} ({r}_{1} \gt{r}_{2} )$是λ$\lambda$设计D$D$的两个复制数。我们表示块大小ŞBjŞ$|{B}_{j} |$by kj${k}_{j} $和by k j′${k}_{j} ^{^{\prime}}$(分别为kj*${k}_{j} ^{*}$)复制编号为r 1的点数${r}_{1} $(分别,r 2${r}_{2} $)${B}_{j} $$D$D$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards the Ryser–Woodall λ $\lambda $ -design conjecture

Let r 1 ${r}_{1}$ and r 2 , ( r 1 > r 2 ) ${r}_{2},({r}_{1}\gt {r}_{2})$ be the two replication numbers of a λ $\lambda $ -design D $D$ . We denote the block size B j $| {B}_{j}| $ by k j ${k}_{j}$ and by k j ${k}_{j}^{^{\prime} }$ (respectively, k j * ${k}_{j}^{* }$ ) the number of points with replication number r 1 ${r}_{1}$ (respectively, r 2 ${r}_{2}$ ) in block B j ${B}_{j}$ of D $D$ . Take g = gcd r 1 r 2 gcd ( r 1 1 , r 2 1 ) , λ , λ = λ 1 g , r 1 r 2 gcd ( r 1 1 , r 2 1 ) = g m $g=\text{gcd}\left(\frac{{r}_{1}-{r}_{2}}{\text{gcd}({r}_{1}-1,{r}_{2}-1)},\lambda \right),\lambda ={\lambda }_{1}g,\frac{{r}_{1}-{r}_{2}}{\text{gcd}({r}_{1}-1,{r}_{2}-1)}=gm$ , for positive integers λ 1 , m ${\lambda }_{1},m$ and let g 1 ${g}_{1}$ be the largest divisor of λ 1 ${\lambda }_{1}$ such that if p $p$ is a prime dividing g 1 ${g}_{1}$ , then p $p$ divides g $g$ . We obtain the following results:

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信