关于一些广义Kneer图的色数

IF 0.5 4区 数学 Q3 MATHEMATICS
Jozefien D'haeseleer, Klaus Metsch, Daniel Werner
{"title":"关于一些广义Kneer图的色数","authors":"Jozefien D'haeseleer,&nbsp;Klaus Metsch,&nbsp;Daniel Werner","doi":"10.1002/jcd.21875","DOIUrl":null,"url":null,"abstract":"<p>We determine the chromatic number of the Kneser graph <math>\n <semantics>\n <mrow>\n <mi>q</mi>\n \n <msub>\n <mi>Γ</mi>\n <mrow>\n <mn>7</mn>\n \n <mo>,</mo>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mn>3</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </msub>\n </mrow>\n <annotation> $q{{\\rm{\\Gamma }}}_{7,\\{3,4\\}}$</annotation>\n </semantics></math> of flags of vectorial type <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mn>3</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $\\{3,4\\}$</annotation>\n </semantics></math> of a rank 7 vector space over the finite field <math>\n <semantics>\n <mrow>\n <mi>GF</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>q</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\mathrm{GF}(q)$</annotation>\n </semantics></math> for large <math>\n <semantics>\n <mrow>\n <mi>q</mi>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math> and describe the colorings that attain the bound. This result relies heavily, not only on the independence number, but also on the structure of all <i>large</i> independent sets. Furthermore, our proof is more general in the following sense: it provides the chromatic number of the Kneser graphs <math>\n <semantics>\n <mrow>\n <mi>q</mi>\n \n <msub>\n <mi>Γ</mi>\n <mrow>\n <mn>2</mn>\n \n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mi>d</mi>\n \n <mo>,</mo>\n \n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </msub>\n </mrow>\n <annotation> $q{{\\rm{\\Gamma }}}_{2d+1,\\{d,d+1\\}}$</annotation>\n </semantics></math> of flags of vectorial type <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mi>d</mi>\n \n <mo>,</mo>\n \n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $\\{d,d+1\\}$</annotation>\n </semantics></math> of a rank <math>\n <semantics>\n <mrow>\n <mn>2</mn>\n \n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $2d+1$</annotation>\n </semantics></math> vector space over <math>\n <semantics>\n <mrow>\n <mi>GF</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>q</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\mathrm{GF}(q)$</annotation>\n </semantics></math> for large <math>\n <semantics>\n <mrow>\n <mi>q</mi>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math> as long as the <i>large</i> independent sets of the graphs are only the ones that are known.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 4","pages":"179-204"},"PeriodicalIF":0.5000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the chromatic number of some generalized Kneser graphs\",\"authors\":\"Jozefien D'haeseleer,&nbsp;Klaus Metsch,&nbsp;Daniel Werner\",\"doi\":\"10.1002/jcd.21875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We determine the chromatic number of the Kneser graph <math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n \\n <msub>\\n <mi>Γ</mi>\\n <mrow>\\n <mn>7</mn>\\n \\n <mo>,</mo>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mn>3</mn>\\n \\n <mo>,</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> $q{{\\\\rm{\\\\Gamma }}}_{7,\\\\{3,4\\\\}}$</annotation>\\n </semantics></math> of flags of vectorial type <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mn>3</mn>\\n \\n <mo>,</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\{3,4\\\\}$</annotation>\\n </semantics></math> of a rank 7 vector space over the finite field <math>\\n <semantics>\\n <mrow>\\n <mi>GF</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>q</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\mathrm{GF}(q)$</annotation>\\n </semantics></math> for large <math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <annotation> $q$</annotation>\\n </semantics></math> and describe the colorings that attain the bound. This result relies heavily, not only on the independence number, but also on the structure of all <i>large</i> independent sets. Furthermore, our proof is more general in the following sense: it provides the chromatic number of the Kneser graphs <math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n \\n <msub>\\n <mi>Γ</mi>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>d</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n \\n <mo>,</mo>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mi>d</mi>\\n \\n <mo>,</mo>\\n \\n <mi>d</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> $q{{\\\\rm{\\\\Gamma }}}_{2d+1,\\\\{d,d+1\\\\}}$</annotation>\\n </semantics></math> of flags of vectorial type <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mi>d</mi>\\n \\n <mo>,</mo>\\n \\n <mi>d</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\{d,d+1\\\\}$</annotation>\\n </semantics></math> of a rank <math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>d</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> $2d+1$</annotation>\\n </semantics></math> vector space over <math>\\n <semantics>\\n <mrow>\\n <mi>GF</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>q</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\mathrm{GF}(q)$</annotation>\\n </semantics></math> for large <math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <annotation> $q$</annotation>\\n </semantics></math> as long as the <i>large</i> independent sets of the graphs are only the ones that are known.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"31 4\",\"pages\":\"179-204\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21875\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21875","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们确定了Kneer图qΓ7的色数,{3,4}向量类型{3,4}的标志的$q{\rm{\Gamma}}大q的有限域GF(q)$\mathrm{GF}(q)$上的秩为7的向量空间的$\$q$,并描述达到界限的颜色。这一结果在很大程度上依赖于独立数,也依赖于所有大型独立集的结构。此外我们的证明在以下意义上是更一般的:它提供了Kneer图qΓ2d+的色数1.{d,d+1}向量类型标志的$q{\rm{\Gamma}}_{2d+1,\{d,d+1\}}$一个秩的{d,d+1}$\GF(q)上的2d+1$2d+1$向量空间$\mathrm{GF}(q)$对于大q$q$,只要图的大独立集只是已知的集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the chromatic number of some generalized Kneser graphs

We determine the chromatic number of the Kneser graph q Γ 7 , { 3 , 4 } $q{{\rm{\Gamma }}}_{7,\{3,4\}}$ of flags of vectorial type { 3 , 4 } $\{3,4\}$ of a rank 7 vector space over the finite field GF ( q ) $\mathrm{GF}(q)$ for large q $q$ and describe the colorings that attain the bound. This result relies heavily, not only on the independence number, but also on the structure of all large independent sets. Furthermore, our proof is more general in the following sense: it provides the chromatic number of the Kneser graphs q Γ 2 d + 1 , { d , d + 1 } $q{{\rm{\Gamma }}}_{2d+1,\{d,d+1\}}$ of flags of vectorial type { d , d + 1 } $\{d,d+1\}$ of a rank 2 d + 1 $2d+1$ vector space over GF ( q ) $\mathrm{GF}(q)$ for large q $q$ as long as the large independent sets of the graphs are only the ones that are known.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信