{"title":"On the existence of \u0000 \u0000 \u0000 k\u0000 \u0000 $k$\u0000 -cycle semiframes for even \u0000 \u0000 \u0000 k\u0000 \u0000 $k$","authors":"Li Wang, Haibo Ji, Haitao Cao","doi":"10.1002/jcd.21908","DOIUrl":"https://doi.org/10.1002/jcd.21908","url":null,"abstract":"<p>A <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>C</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${C}_{k}$</annotation>\u0000 </semantics></math>-semiframe of type <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>g</mi>\u0000 <mi>u</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation> ${g}^{u}$</annotation>\u0000 </semantics></math> is a <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>C</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${C}_{k}$</annotation>\u0000 </semantics></math>-group divisible design of type <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>g</mi>\u0000 <mi>u</mi>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>X</mi>\u0000 <mo>,</mo>\u0000 <mi>G</mi>\u0000 <mo>,</mo>\u0000 <mi>ℬ</mi>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${g}^{u}({mathscr{X}},{mathscr{G}},{rm{ {mathcal B} }})$</annotation>\u0000 </semantics></math> in which <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{X}}$</annotation>\u0000 </semantics></math> is the vertex set, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{G}}$</annotation>\u0000 </semantics></math> is the group set, and the set <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ℬ</mi>\u0000 </mrow>\u0000 <annotation> ${rm{ {mathcal B} }}$</annotation>\u0000 </semantics></math> of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-cycles can be written as a disjoint union <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ℬ</mi>\u0000 <mo>=</mo>\u0000 <mi>P</mi>\u0000 <mo>∪</mo>\u0000 <mi>Q</mi>\u0000 </mrow>\u0000 <annotation> ${rm{ {mathcal B} }}={mathscr{P}}cup {mathscr{Q}}$</annotation>\u0000 </semantics></math> where <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>P</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{P}}$</annotation>\u0000 </semantics></math> is partitioned into parallel classes","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 10","pages":"511-530"},"PeriodicalIF":0.7,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50131264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0