求助PDF
{"title":"有限射影空间的色指数","authors":"Lei Xu, Tao Feng","doi":"10.1002/jcd.21904","DOIUrl":null,"url":null,"abstract":"<p>A line coloring of <math>\n <semantics>\n <mrow>\n <mtext>PG</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{PG}(n,q)$</annotation>\n </semantics></math>, the <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-dimensional projective space over GF<math>\n <semantics>\n <mrow>\n <mo>(</mo>\n \n <mi>q</mi>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(q)$</annotation>\n </semantics></math>, is an assignment of colors to all lines of <math>\n <semantics>\n <mrow>\n <mtext>PG</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{PG}(n,q)$</annotation>\n </semantics></math> so that any two lines with the same color do not intersect. The chromatic index of <math>\n <semantics>\n <mrow>\n <mtext>PG</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{PG}(n,q)$</annotation>\n </semantics></math>, denoted by <math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n \n <mo>′</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mtext>PG</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\chi ^{\\prime} (\\text{PG}(n,q))$</annotation>\n </semantics></math>, is the least number of colors for which a coloring of <math>\n <semantics>\n <mrow>\n <mtext>PG</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{PG}(n,q)$</annotation>\n </semantics></math> exists. This paper translates the problem of determining the chromatic index of <math>\n <semantics>\n <mrow>\n <mtext>PG</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{PG}(n,q)$</annotation>\n </semantics></math> to the problem of examining the existences of <math>\n <semantics>\n <mrow>\n <mtext>PG</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>3</mn>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{PG}(3,q)$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mtext>PG</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>4</mn>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{PG}(4,q)$</annotation>\n </semantics></math> with certain properties. In particular, it is shown that for any odd integer <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>q</mi>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>3</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n \n <mo>,</mo>\n \n <mn>8</mn>\n \n <mo>,</mo>\n \n <mn>16</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mi>χ</mi>\n \n <mo>′</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mtext>PG</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msup>\n <mi>q</mi>\n \n <mi>n</mi>\n </msup>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>q</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $q\\in \\{3,4,8,16\\},\\chi ^{\\prime} (\\text{PG}(n,q))=({q}^{n}-1)\\unicode{x02215}(q-1)$</annotation>\n </semantics></math>, which implies the existence of a parallelism of <math>\n <semantics>\n <mrow>\n <mtext>PG</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{PG}(n,q)$</annotation>\n </semantics></math> for any odd integer <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>q</mi>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>3</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n \n <mo>,</mo>\n \n <mn>8</mn>\n \n <mo>,</mo>\n \n <mn>16</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $q\\in \\{3,4,8,16\\}$</annotation>\n </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 9","pages":"432-446"},"PeriodicalIF":0.5000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The chromatic index of finite projective spaces\",\"authors\":\"Lei Xu, Tao Feng\",\"doi\":\"10.1002/jcd.21904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A line coloring of <math>\\n <semantics>\\n <mrow>\\n <mtext>PG</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{PG}(n,q)$</annotation>\\n </semantics></math>, the <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>-dimensional projective space over GF<math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>q</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n <annotation> $(q)$</annotation>\\n </semantics></math>, is an assignment of colors to all lines of <math>\\n <semantics>\\n <mrow>\\n <mtext>PG</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{PG}(n,q)$</annotation>\\n </semantics></math> so that any two lines with the same color do not intersect. The chromatic index of <math>\\n <semantics>\\n <mrow>\\n <mtext>PG</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{PG}(n,q)$</annotation>\\n </semantics></math>, denoted by <math>\\n <semantics>\\n <mrow>\\n <mi>χ</mi>\\n \\n <mo>′</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mtext>PG</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\chi ^{\\\\prime} (\\\\text{PG}(n,q))$</annotation>\\n </semantics></math>, is the least number of colors for which a coloring of <math>\\n <semantics>\\n <mrow>\\n <mtext>PG</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{PG}(n,q)$</annotation>\\n </semantics></math> exists. This paper translates the problem of determining the chromatic index of <math>\\n <semantics>\\n <mrow>\\n <mtext>PG</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{PG}(n,q)$</annotation>\\n </semantics></math> to the problem of examining the existences of <math>\\n <semantics>\\n <mrow>\\n <mtext>PG</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>3</mn>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{PG}(3,q)$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mtext>PG</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>4</mn>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{PG}(4,q)$</annotation>\\n </semantics></math> with certain properties. In particular, it is shown that for any odd integer <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n \\n <mo>∈</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>3</mn>\\n \\n <mo>,</mo>\\n \\n <mn>4</mn>\\n \\n <mo>,</mo>\\n \\n <mn>8</mn>\\n \\n <mo>,</mo>\\n \\n <mn>16</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <mi>χ</mi>\\n \\n <mo>′</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mtext>PG</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msup>\\n <mi>q</mi>\\n \\n <mi>n</mi>\\n </msup>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∕</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>q</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $q\\\\in \\\\{3,4,8,16\\\\},\\\\chi ^{\\\\prime} (\\\\text{PG}(n,q))=({q}^{n}-1)\\\\unicode{x02215}(q-1)$</annotation>\\n </semantics></math>, which implies the existence of a parallelism of <math>\\n <semantics>\\n <mrow>\\n <mtext>PG</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{PG}(n,q)$</annotation>\\n </semantics></math> for any odd integer <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n \\n <mo>∈</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>3</mn>\\n \\n <mo>,</mo>\\n \\n <mn>4</mn>\\n \\n <mo>,</mo>\\n \\n <mn>8</mn>\\n \\n <mo>,</mo>\\n \\n <mn>16</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation> $q\\\\in \\\\{3,4,8,16\\\\}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"31 9\",\"pages\":\"432-446\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21904\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21904","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用