{"title":"二次拉丁平方的环与反完美1-因子分解","authors":"Jack Allsop","doi":"10.1002/jcd.21905","DOIUrl":null,"url":null,"abstract":"<p>A Latin square of order <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is an <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>×</mo>\n \n <mi>n</mi>\n </mrow>\n <annotation> $n\\times n$</annotation>\n </semantics></math> matrix of <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> symbols, such that each symbol occurs exactly once in each row and column. For an odd prime power <math>\n <semantics>\n <mrow>\n <mi>q</mi>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math> let <math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> ${{\\mathbb{F}}}_{q}$</annotation>\n </semantics></math> denote the finite field of order <math>\n <semantics>\n <mrow>\n <mi>q</mi>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math>. A quadratic Latin square is a Latin square <math>\n <semantics>\n <mrow>\n <mi>L</mi>\n \n <mrow>\n <mo>[</mo>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <mi>b</mi>\n </mrow>\n \n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal L} }}[a,b]$</annotation>\n </semantics></math> defined by\n\n </p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 9","pages":"447-475"},"PeriodicalIF":0.5000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21905","citationCount":"0","resultStr":"{\"title\":\"Cycles of quadratic Latin squares and antiperfect 1-factorisations\",\"authors\":\"Jack Allsop\",\"doi\":\"10.1002/jcd.21905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A Latin square of order <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> is an <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>×</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n <annotation> $n\\\\times n$</annotation>\\n </semantics></math> matrix of <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> symbols, such that each symbol occurs exactly once in each row and column. For an odd prime power <math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <annotation> $q$</annotation>\\n </semantics></math> let <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mi>q</mi>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\mathbb{F}}}_{q}$</annotation>\\n </semantics></math> denote the finite field of order <math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <annotation> $q$</annotation>\\n </semantics></math>. A quadratic Latin square is a Latin square <math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n \\n <mrow>\\n <mo>[</mo>\\n \\n <mrow>\\n <mi>a</mi>\\n \\n <mo>,</mo>\\n \\n <mi>b</mi>\\n </mrow>\\n \\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{ {\\\\mathcal L} }}[a,b]$</annotation>\\n </semantics></math> defined by\\n\\n </p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"31 9\",\"pages\":\"447-475\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21905\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21905\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21905","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Cycles of quadratic Latin squares and antiperfect 1-factorisations
A Latin square of order is an matrix of symbols, such that each symbol occurs exactly once in each row and column. For an odd prime power let denote the finite field of order . A quadratic Latin square is a Latin square defined by
期刊介绍:
The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including:
block designs, t-designs, pairwise balanced designs and group divisible designs
Latin squares, quasigroups, and related algebras
computational methods in design theory
construction methods
applications in computer science, experimental design theory, and coding theory
graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics
finite geometry and its relation with design theory.
algebraic aspects of design theory.
Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.