自对偶关联方案、Hamming方案的融合和部分几何设计

IF 0.5 4区 数学 Q3 MATHEMATICS
Bangteng Xu
{"title":"自对偶关联方案、Hamming方案的融合和部分几何设计","authors":"Bangteng Xu","doi":"10.1002/jcd.21889","DOIUrl":null,"url":null,"abstract":"<p>Partial geometric designs can be constructed from basic relations of association schemes. An infinite family of partial geometric designs were constructed from the fusion schemes of certain Hamming schemes in work by Nowak et al. (2016). A general method to create partial geometric designs from association schemes is given by Xu (2023). In this paper, we continue the research by Xu (2023). We will first study the properties and characterizations of self-dual association schemes. Then using the characterizations of self-dual association schemes and the representation theory (character tables) of commutative association schemes, we obtain characterizations and classifications of self-dual (symmetric or nonsymmetric) association schemes of rank 4 that produce as many as possible nontrivial partial geometric designs or 2-designs. In particular, for a primitive self-dual symmetric association scheme <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>X</mi>\n \n <mo>,</mo>\n \n <msub>\n <mrow>\n <mo>{</mo>\n \n <msub>\n <mi>R</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>}</mo>\n </mrow>\n \n <mrow>\n <mn>0</mn>\n \n <mo>≤</mo>\n \n <mi>i</mi>\n \n <mo>≤</mo>\n \n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\mathscr{X}}=(X,{\\{{R}_{i}\\}}_{0\\le i\\le 3})$</annotation>\n </semantics></math> of rank 4, if <math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n \n <mi>X</mi>\n \n <mo>∣</mo>\n </mrow>\n <annotation> $| X| $</annotation>\n </semantics></math> is a power of 3 and each of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${R}_{1}$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${R}_{2}$</annotation>\n </semantics></math>, and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>∪</mo>\n \n <msub>\n <mi>R</mi>\n \n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${R}_{0}\\cup {R}_{3}$</annotation>\n </semantics></math> induces a partial geometric design, then we will prove that <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> ${\\mathscr{X}}$</annotation>\n </semantics></math> is algebraically isomorphic to a fusion scheme of the Hamming scheme <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>d</mi>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $H(d,3)$</annotation>\n </semantics></math> for some odd number <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 8","pages":"373-399"},"PeriodicalIF":0.5000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self-dual association schemes, fusions of Hamming schemes, and partial geometric designs\",\"authors\":\"Bangteng Xu\",\"doi\":\"10.1002/jcd.21889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Partial geometric designs can be constructed from basic relations of association schemes. An infinite family of partial geometric designs were constructed from the fusion schemes of certain Hamming schemes in work by Nowak et al. (2016). A general method to create partial geometric designs from association schemes is given by Xu (2023). In this paper, we continue the research by Xu (2023). We will first study the properties and characterizations of self-dual association schemes. Then using the characterizations of self-dual association schemes and the representation theory (character tables) of commutative association schemes, we obtain characterizations and classifications of self-dual (symmetric or nonsymmetric) association schemes of rank 4 that produce as many as possible nontrivial partial geometric designs or 2-designs. In particular, for a primitive self-dual symmetric association scheme <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>X</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mrow>\\n <mo>{</mo>\\n \\n <msub>\\n <mi>R</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mrow>\\n <mn>0</mn>\\n \\n <mo>≤</mo>\\n \\n <mi>i</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\mathscr{X}}=(X,{\\\\{{R}_{i}\\\\}}_{0\\\\le i\\\\le 3})$</annotation>\\n </semantics></math> of rank 4, if <math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n \\n <mi>X</mi>\\n \\n <mo>∣</mo>\\n </mrow>\\n <annotation> $| X| $</annotation>\\n </semantics></math> is a power of 3 and each of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation> ${R}_{1}$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${R}_{2}$</annotation>\\n </semantics></math>, and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n \\n <mn>0</mn>\\n </msub>\\n \\n <mo>∪</mo>\\n \\n <msub>\\n <mi>R</mi>\\n \\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation> ${R}_{0}\\\\cup {R}_{3}$</annotation>\\n </semantics></math> induces a partial geometric design, then we will prove that <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> ${\\\\mathscr{X}}$</annotation>\\n </semantics></math> is algebraically isomorphic to a fusion scheme of the Hamming scheme <math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>d</mi>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $H(d,3)$</annotation>\\n </semantics></math> for some odd number <math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <annotation> $d$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"31 8\",\"pages\":\"373-399\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21889\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21889","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

局部几何设计可以由关联方案的基本关系来构造。Nowak等人(2016)根据某些Hamming方案的融合方案构建了一个无限族的局部几何设计。Xu(2023)给出了一种从关联方案创建局部几何设计的通用方法。在本文中,我们继续徐(2023)的研究。我们将首先研究自对偶关联方案的性质和特征。然后利用自对偶关联方案的特征和交换关联方案的表示理论(特征表),我们得到了秩为4的自对偶(对称或非对称)关联方案的刻画和分类,这些方案产生尽可能多的非平凡部分几何设计或2-设计。特别地,对于基元自对偶对称关联方案X=(X,{R i}0≤i≤3)${\mathscr{X}}=(X{\{{R}_{i} {0\le i\le 3})$,如果|X|$|X|$是3的幂,并且R中的每一个为1${R}_{1} $,R 2${R}_{2} $和R0õR3${R}_{0}\杯{R}_{3} $引入了部分几何设计,则我们将证明X${\mathscr{X}}$代数同构于Hamming方案H的一个融合方案(d,3)$H(d,三)$对于某个奇数d$d$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-dual association schemes, fusions of Hamming schemes, and partial geometric designs

Partial geometric designs can be constructed from basic relations of association schemes. An infinite family of partial geometric designs were constructed from the fusion schemes of certain Hamming schemes in work by Nowak et al. (2016). A general method to create partial geometric designs from association schemes is given by Xu (2023). In this paper, we continue the research by Xu (2023). We will first study the properties and characterizations of self-dual association schemes. Then using the characterizations of self-dual association schemes and the representation theory (character tables) of commutative association schemes, we obtain characterizations and classifications of self-dual (symmetric or nonsymmetric) association schemes of rank 4 that produce as many as possible nontrivial partial geometric designs or 2-designs. In particular, for a primitive self-dual symmetric association scheme X = ( X , { R i } 0 i 3 ) ${\mathscr{X}}=(X,{\{{R}_{i}\}}_{0\le i\le 3})$ of rank 4, if X $| X| $ is a power of 3 and each of R 1 ${R}_{1}$ , R 2 ${R}_{2}$ , and R 0 R 3 ${R}_{0}\cup {R}_{3}$ induces a partial geometric design, then we will prove that X ${\mathscr{X}}$ is algebraically isomorphic to a fusion scheme of the Hamming scheme H ( d , 3 ) $H(d,3)$ for some odd number d $d$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信