{"title":"Maximum Shattering","authors":"Noga Alon, Varun Sivashankar, Daniel G. Zhu","doi":"10.1002/jcd.22005","DOIUrl":null,"url":null,"abstract":"<p>A family <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow>\n </mrow>\n </semantics></math> of subsets of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>[</mo>\n \n <mi>n</mi>\n \n <mo>]</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>2</mn>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> shatters a set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>A</mi>\n \n <mo>⊆</mo>\n \n <mrow>\n <mo>[</mo>\n \n <mi>n</mi>\n \n <mo>]</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> if for every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>A</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>⊆</mo>\n \n <mi>A</mi>\n </mrow>\n </mrow>\n </semantics></math>, there is an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n \n <mo>∈</mo>\n \n <mi>ℱ</mi>\n </mrow>\n </mrow>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>F</mi>\n \n <mo>∩</mo>\n \n <mi>A</mi>\n \n <mo>=</mo>\n \n <msup>\n <mi>A</mi>\n \n <mo>'</mo>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>. We develop a framework to analyze <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>f</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>d</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, the maximum possible number of subsets of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>[</mo>\n \n <mi>n</mi>\n \n <mo>]</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n </semantics></math> that can be shattered by a family of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>. Among other results, we determine <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>f</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>d</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> exactly for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> and show that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> grow, with both <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>d</mi>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mi>d</mi>\n </mrow>\n </mrow>\n </semantics></math> tending to infinity, then for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> satisfying <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mn>2</mn>\n \n <mi>d</mi>\n </msup>\n \n <mo>≤</mo>\n \n <mi>k</mi>\n \n <mo>≤</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <msup>\n <mn>2</mn>\n \n <mi>d</mi>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>, we have <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>f</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>d</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mi>o</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mn>1</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>c</mi>\n \n <mfenced>\n <mfrac>\n <mi>n</mi>\n \n <mi>d</mi>\n </mfrac>\n </mfenced>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n </semantics></math>, roughly 0.289, is the probability that a large square matrix over <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> is invertible. This latter result extends work of Das and Mészáros. As an application, we improve bounds for the existence of covering arrays for certain alphabet sizes.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 12","pages":"456-470"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.22005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.22005","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A family of subsets of shatters a set if for every , there is an such that . We develop a framework to analyze , the maximum possible number of subsets of of size that can be shattered by a family of size . Among other results, we determine exactly for and show that if and grow, with both and tending to infinity, then for any satisfying , we have , where , roughly 0.289, is the probability that a large square matrix over is invertible. This latter result extends work of Das and Mészáros. As an application, we improve bounds for the existence of covering arrays for certain alphabet sizes.
期刊介绍:
The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including:
block designs, t-designs, pairwise balanced designs and group divisible designs
Latin squares, quasigroups, and related algebras
computational methods in design theory
construction methods
applications in computer science, experimental design theory, and coding theory
graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics
finite geometry and its relation with design theory.
algebraic aspects of design theory.
Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.