Journal of Combinatorial Designs最新文献

筛选
英文 中文
Every latin hypercube of order 5 has transversals 每个 5 阶拉丁超立方体都有横轴
IF 0.5 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-07-30 DOI: 10.1002/jcd.21954
Alexey L. Perezhogin, Vladimir N. Potapov, Sergey Yu. Vladimirov
{"title":"Every latin hypercube of order 5 has transversals","authors":"Alexey L. Perezhogin, Vladimir N. Potapov, Sergey Yu. Vladimirov","doi":"10.1002/jcd.21954","DOIUrl":"10.1002/jcd.21954","url":null,"abstract":"<p>We prove that for all <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>></mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $ngt 1$</annotation>\u0000 </semantics></math> every latin <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>-dimensional cube of order 5 has transversals. We find all 123 paratopy classes of layer-latin cubes of order 5 with no transversals. For each <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>3</mn>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $nge 3$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>3</mn>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $qge 3$</annotation>\u0000 </semantics></math> we construct a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mn>2</mn>\u0000 \u0000 <mi>q</mi>\u0000 \u0000 <mo>−</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>×</mo>\u0000 \u0000 <mi>q</mi>\u0000 \u0000 <mo>×</mo>\u0000 \u0000 <mi>⋯</mi>\u0000 \u0000 <mo>×</mo>\u0000 \u0000 <mi>q</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $(2q-2)times qtimes {rm{cdots }}times q$</annotation>\u0000 </semantics></math> latin <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $n$</annotation>\u0000 </semantics></math>-dimensional cuboid of order <span></span><ma","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 11","pages":"679-699"},"PeriodicalIF":0.5,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalised evasive subspaces 广义回避子空间
IF 0.5 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-07-08 DOI: 10.1002/jcd.21953
Anina Gruica, Alberto Ravagnani, John Sheekey, Ferdinando Zullo
{"title":"Generalised evasive subspaces","authors":"Anina Gruica,&nbsp;Alberto Ravagnani,&nbsp;John Sheekey,&nbsp;Ferdinando Zullo","doi":"10.1002/jcd.21953","DOIUrl":"10.1002/jcd.21953","url":null,"abstract":"<p>We introduce and explore a new concept of evasive subspace with respect to a collection of subspaces sharing a common dimension, most notably partial spreads. We show that this concept generalises known notions of subspace scatteredness and evasiveness. We establish various upper bounds for the dimension of an evasive subspace with respect to arbitrary partial spreads, obtaining improvements for the Desarguesian ones. We also establish existence results for evasive spaces in a nonconstructive way, using a graph theory approach. The upper and lower bounds we derive have a precise interpretation as bounds for the critical exponent of certain combinatorial geometries. Finally, we investigate connections between the notion of evasive space we introduce and the theory of rank-metric codes, obtaining new results on the covering radius and on the existence of minimal vector rank-metric codes.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 11","pages":"642-678"},"PeriodicalIF":0.5,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141574803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On eigenfunctions of the block graphs of geometric Steiner systems 论几何斯坦纳系统块图的特征函数
IF 0.5 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-06-24 DOI: 10.1002/jcd.21951
Sergey Goryainov, Dmitry Panasenko
{"title":"On eigenfunctions of the block graphs of geometric Steiner systems","authors":"Sergey Goryainov,&nbsp;Dmitry Panasenko","doi":"10.1002/jcd.21951","DOIUrl":"10.1002/jcd.21951","url":null,"abstract":"<p>This paper lies in the context of the studies of eigenfunctions of graphs having minimum cardinality of support. One of the tools is the weight-distribution bound, a lower bound on the cardinality of support of an eigenfunction of a distance-regular graph corresponding to a nonprincipal eigenvalue. The tightness of the weight-distribution bound was previously shown in general for the smallest eigenvalue of a Grassmann graph. However, a characterisation of optimal eigenfunctions was not obtained. Motivated by this open problem, we consider the class of strongly regular Grassmann graphs and give the required characterisation in this case. We then show the tightness of the weight-distribution bound for block graphs of affine designs (defined on the lines of an affine space with two lines being adjacent when intersect) and obtain a similar characterisation of optimal eigenfunctions.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 11","pages":"629-641"},"PeriodicalIF":0.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetric 2- ( 36 , 15 , 6 ) $(36,15,6)$ designs with an automorphism of order two 对称 2- ( 36 , 15 , 6 ) $(36,15,6)$设计的二阶自变量
IF 0.5 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-06-17 DOI: 10.1002/jcd.21952
Sanja Rukavina, Vladimir D. Tonchev
{"title":"Symmetric 2-\u0000 \u0000 \u0000 \u0000 \u0000 (\u0000 \u0000 36\u0000 ,\u0000 15\u0000 ,\u0000 6\u0000 \u0000 )\u0000 \u0000 \u0000 \u0000 $(36,15,6)$\u0000 designs with an automorphism of order two","authors":"Sanja Rukavina,&nbsp;Vladimir D. Tonchev","doi":"10.1002/jcd.21952","DOIUrl":"https://doi.org/10.1002/jcd.21952","url":null,"abstract":"&lt;p&gt;Bouyukliev, Fack and Winne classified all 2-&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;36&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;15&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;6&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $(36,15,6)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; designs that admit an automorphism of odd prime order, and gave a partial classification of such designs that admit an automorphism of order 2. In this paper, we give the classification of all symmetric 2-&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;36&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;15&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;6&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $(36,15,6)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; designs that admit an automorphism of order two. It is shown that there are exactly &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;547&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;701&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $1,547,701$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; nonisomorphic such designs, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;135&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;779&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $135,779$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of which are self-dual designs. The ternary linear codes spanned by the incidence matrices of these designs are computed. Among these codes, there are near-extremal self-dual cod","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 10","pages":"606-624"},"PeriodicalIF":0.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mutual incidence matrix of two balanced incomplete block designs 两个平衡不完全区块设计的互现矩阵
IF 0.5 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-06-17 DOI: 10.1002/jcd.21949
Alexander Shramchenko, Vasilisa Shramchenko
{"title":"Mutual incidence matrix of two balanced incomplete block designs","authors":"Alexander Shramchenko,&nbsp;Vasilisa Shramchenko","doi":"10.1002/jcd.21949","DOIUrl":"https://doi.org/10.1002/jcd.21949","url":null,"abstract":"<p>We propose to consider a mutual incidence matrix <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $M$</annotation>\u0000 </semantics></math> of two balanced incomplete block designs built on the same finite set. In the simplest case, this matrix reduces to the standard incidence matrix of one block design. We find all eigenvalues of the matrices <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>M</mi>\u0000 \u0000 <msup>\u0000 <mi>M</mi>\u0000 \u0000 <mi>T</mi>\u0000 </msup>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $M{M}^{T}$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mi>M</mi>\u0000 \u0000 <mi>T</mi>\u0000 </msup>\u0000 \u0000 <mi>M</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${M}^{T}M$</annotation>\u0000 </semantics></math> and their eigenspaces.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 10","pages":"579-590"},"PeriodicalIF":0.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21949","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinite series of 3-designs in the extended quadratic residue code 扩展二次残差码中的 3-设计无限序列
IF 0.5 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-06-17 DOI: 10.1002/jcd.21950
Madoka Awada
{"title":"Infinite series of 3-designs in the extended quadratic residue code","authors":"Madoka Awada","doi":"10.1002/jcd.21950","DOIUrl":"https://doi.org/10.1002/jcd.21950","url":null,"abstract":"<p>In this paper, we show an infinite series of 3-designs in the extended quadratic residue codes over <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>F</mi>\u0000 \u0000 <msup>\u0000 <mi>r</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msup>\u0000 </msub>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${{mathbb{F}}}_{{r}^{2}}$</annotation>\u0000 </semantics></math> for a prime <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>r</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $r$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 10","pages":"591-605"},"PeriodicalIF":0.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zarankiewicz numbers near the triple system threshold 接近三重系统临界值的扎兰凯维奇数
IF 0.5 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-06-02 DOI: 10.1002/jcd.21948
Guangzhou Chen, Daniel Horsley, Adam Mammoliti
{"title":"Zarankiewicz numbers near the triple system threshold","authors":"Guangzhou Chen,&nbsp;Daniel Horsley,&nbsp;Adam Mammoliti","doi":"10.1002/jcd.21948","DOIUrl":"https://doi.org/10.1002/jcd.21948","url":null,"abstract":"&lt;p&gt;For positive integers &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $m$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, the Zarankiewicz number &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Z&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${Z}_{2,2}(m,n)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; can be defined as the maximum total degree of a linear hypergraph with &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $m$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; vertices and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; edges. Guy determined &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Z&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${Z}_{2,2}(m,n)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; for all &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;⩾&lt;/mo&gt;\u0000 &lt;mfenced&gt;\u0000 &lt;mfrac&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mfrac&gt;\u0000 &lt;/mfenced&gt;\u0000 &lt;mo&gt;∕&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 9","pages":"556-576"},"PeriodicalIF":0.5,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21948","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Oberwolfach problem with loving couples 奥伯沃尔法赫的恩爱夫妻问题
IF 0.5 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-05-20 DOI: 10.1002/jcd.21946
Gloria Rinaldi
{"title":"The Oberwolfach problem with loving couples","authors":"Gloria Rinaldi","doi":"10.1002/jcd.21946","DOIUrl":"10.1002/jcd.21946","url":null,"abstract":"<p>We generalize the well-known Oberwolfach problem posed by Ringel in 1967. We suppose to have <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mfrac>\u0000 <mi>v</mi>\u0000 \u0000 <mn>2</mn>\u0000 </mfrac>\u0000 </mrow>\u0000 <annotation> $frac{v}{2}$</annotation>\u0000 </semantics></math> couples (here <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>4</mn>\u0000 </mrow>\u0000 <annotation> $vge 4$</annotation>\u0000 </semantics></math> is an even integer) and suppose that they have to be seated for several nights at <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $t$</annotation>\u0000 </semantics></math> round tables in such a way that each person seats next to his partner exactly <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation> $rge 0$</annotation>\u0000 </semantics></math> times and next to every other person exactly once. We call this problem the Oberwolfach problem with loving couples. When <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation> $r=0$</annotation>\u0000 </semantics></math>, the problem coincides with the so-called spouse-avoiding variant, which was introduced by Huang, Kotzig, and Rosa in 1979. While if either <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation> $r=2$</annotation>\u0000 </semantics></math> or <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 </mrow>\u0000 <annotation> $r$</annotation>\u0000 </semantics></math> equals the number of nights, it corresponds to the spouse-loving variant or to the Honeymoon variant, which was recently studied by Bolohan et al. and by Lepine and Sajna, respectively. In this paper, for each possible choice of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 </mrow>\u0000 <annotation> $r$</annotation>\u0000 </semantics></math>, we construct many classes of solutions to the Oberwolfach problem with loving couples. We also obtain new solutions to the Honeymoon variant.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 9","pages":"532-545"},"PeriodicalIF":0.5,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141120940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifold 1-perfect codes 多倍 1-完美代码
IF 0.5 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-05-20 DOI: 10.1002/jcd.21947
Denis S. Krotov
{"title":"Multifold 1-perfect codes","authors":"Denis S. Krotov","doi":"10.1002/jcd.21947","DOIUrl":"10.1002/jcd.21947","url":null,"abstract":"<p>A multifold 1-perfect code (1-perfect code for list decoding) in any graph is a set <span></span><math>\u0000 \u0000 <semantics>\u0000 \u0000 <mrow>\u0000 \u0000 <mi>C</mi>\u0000 </mrow>\u0000 \u0000 <annotation>\u0000 $C$\u0000</annotation>\u0000 </semantics>\u0000 </math> of vertices such that every vertex of the graph is at distance not more than 1 from exactly <span></span><math>\u0000 \u0000 <semantics>\u0000 \u0000 <mrow>\u0000 \u0000 <mi>μ</mi>\u0000 </mrow>\u0000 \u0000 <annotation>\u0000 $mu $\u0000</annotation>\u0000 </semantics>\u0000 </math> elements of <span></span><math>\u0000 \u0000 <semantics>\u0000 \u0000 <mrow>\u0000 \u0000 <mi>C</mi>\u0000 </mrow>\u0000 \u0000 <annotation>\u0000 $C$\u0000</annotation>\u0000 </semantics>\u0000 </math>. In <span></span><math>\u0000 \u0000 <semantics>\u0000 \u0000 <mrow>\u0000 \u0000 <mi>q</mi>\u0000 </mrow>\u0000 \u0000 <annotation>\u0000 $q$\u0000</annotation>\u0000 </semantics>\u0000 </math>-ary Hamming graphs, where <span></span><math>\u0000 \u0000 <semantics>\u0000 \u0000 <mrow>\u0000 \u0000 <mi>q</mi>\u0000 </mrow>\u0000 \u0000 <annotation>\u0000 $q$\u0000</annotation>\u0000 </semantics>\u0000 </math> is a prime power, we characterize all parameters of multifold 1-perfect codes and all parameters of additive multifold 1-perfect codes. In particular, we show that additive multifold 1-perfect codes are related to special multiset generalizations of spreads, multispreads, and that multispreads of parameters corresponding to multifold 1-perfect codes always exist.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 9","pages":"546-555"},"PeriodicalIF":0.5,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141147910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Block-transitive triple systems with sporadic or alternating socle 具有零星或交替楔形体的积木式三重体系
IF 0.5 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-05-20 DOI: 10.1002/jcd.21945
Suyun Ding, Yilin Zhang, Xiaoqin Zhan, Guangzu Chen
{"title":"Block-transitive triple systems with sporadic or alternating socle","authors":"Suyun Ding,&nbsp;Yilin Zhang,&nbsp;Xiaoqin Zhan,&nbsp;Guangzu Chen","doi":"10.1002/jcd.21945","DOIUrl":"10.1002/jcd.21945","url":null,"abstract":"<p>This paper is a contribution to the classification of all pairs <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>G</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation> $({mathscr{T}},G)$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{T}}$</annotation>\u0000 </semantics></math> is a triple system and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is a block-transitive but not flag-transitive automorphism group of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{T}}$</annotation>\u0000 </semantics></math>. We prove that if the socle of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is a sporadic or alternating group, then one of the following holds:\u0000\u0000 </p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 9","pages":"521-531"},"PeriodicalIF":0.5,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141121084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信