{"title":"On Quasi-Hermitian Varieties in Even Characteristic and Related Orthogonal Arrays","authors":"Angela Aguglia, Luca Giuzzi, Alessandro Montinaro, Viola Siconolfi","doi":"10.1002/jcd.21966","DOIUrl":"https://doi.org/10.1002/jcd.21966","url":null,"abstract":"<p>In this article, we study the BM quasi-Hermitian varieties, laying in the three-dimensional Desarguesian projective space of even order. After a brief investigation of their combinatorial properties, we first show that all of these varieties are projectively equivalent, exhibiting a behavior which is strikingly different from what happens in odd characteristic. This completes the classification project started there. Here we prove more; indeed, by using previous results, we explicitly determine the structure of the full collineation group stabilizing these varieties. Finally, as a byproduct of our investigation, we also construct a family of simple orthogonal arrays <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>O</mi>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mi>q</mi>\u0000 \u0000 <mn>5</mn>\u0000 </msup>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msup>\u0000 <mi>q</mi>\u0000 \u0000 <mn>4</mn>\u0000 </msup>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>q</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, with entries in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>F</mi>\u0000 \u0000 <mi>q</mi>\u0000 </msub>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> is an even prime power. Orthogonal arrays (OA's) are principally used to minimize the number of experiments needed to investigate how variables in testing interact with each other.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 3","pages":"109-122"},"PeriodicalIF":0.5,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21966","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Avoiding Secants of Given Size in Finite Projective Planes","authors":"Tamás Héger, Zoltán Lóránt Nagy","doi":"10.1002/jcd.21968","DOIUrl":"https://doi.org/10.1002/jcd.21968","url":null,"abstract":"<div>\u0000 \u0000 <p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> be a prime power and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> be a natural number. What are the possible cardinalities of point sets <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> in a projective plane of order <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>q</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math>, which do not intersect any line at exactly <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> points? This problem and its variants have been investigated before, in relation with blocking sets, untouchable sets or sets of even type, among others. In this article, we show a series of results which point out the existence of all or almost all possible values <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>m</mi>\u0000 \u0000 <mo>∈</mo>\u0000 \u0000 <mrow>\u0000 <mo>[</mo>\u0000 \u0000 <mrow>\u0000 <mn>0</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <msup>\u0000 <mi>q</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msup>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mi>q</mi>\u0000 \u0000 <mo>+</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow>\u0000 \u0000 <mo>]</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 </semantics></math> for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mo>∣</mo>\u0000 \u0000 <mi>S</mi>\u0000 \u0000 <mo>∣</mo>\u0000 \u0000 <mo>=<","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 3","pages":"83-93"},"PeriodicalIF":0.5,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143120778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingyuan Chen, Huangsheng Yu, R. Julian R. Abel, Dianhua Wu
{"title":"Completely reducible super-simple \u0000 \u0000 \u0000 (\u0000 \u0000 v\u0000 ,\u0000 4\u0000 ,\u0000 4\u0000 \u0000 )\u0000 \u0000 $(v,4,4)$\u0000 -BIBDs and related constant weight codes","authors":"Jingyuan Chen, Huangsheng Yu, R. Julian R. Abel, Dianhua Wu","doi":"10.1002/jcd.21958","DOIUrl":"https://doi.org/10.1002/jcd.21958","url":null,"abstract":"<p>A design is said to be <i>super-simple</i> if the intersection of any two blocks has at most two elements. A design with index <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 </mrow>\u0000 <annotation> $lambda $</annotation>\u0000 </semantics></math> is said to be <i>completely reducible</i>, if its blocks can be partitioned into nonempty collections <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>B</mi>\u0000 \u0000 <mi>i</mi>\u0000 </msub>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>1</mn>\u0000 \u0000 <mo>≤</mo>\u0000 \u0000 <mi>i</mi>\u0000 \u0000 <mo>≤</mo>\u0000 \u0000 <mi>λ</mi>\u0000 </mrow>\u0000 <annotation> ${{mathscr{B}}}_{i},1le ile lambda $</annotation>\u0000 </semantics></math>, such that each <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>B</mi>\u0000 \u0000 <mi>i</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${{mathscr{B}}}_{i}$</annotation>\u0000 </semantics></math> together with the point set forms a design with index unity. In this paper, it is proved that there exists a completely reducible super-simple (CRSS) <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>4</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>4</mn>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation> $(v,4,4)$</annotation>\u0000 </semantics></math> balanced incomplete block design (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>4</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>4</mn>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation> $(v,4,4)$</annotation>\u0000 </semantics></math>-BIBD for short) if and only if <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>13</mn>\u0000 </mrow>\u0000 <annotation> $vge 13$</annotation>\u0000 </semantics></math>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 1","pages":"27-36"},"PeriodicalIF":0.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}