Bent Functions on Finite Nonabelian Groups and Relative Difference Sets

IF 0.5 4区 数学 Q3 MATHEMATICS
Bangteng Xu
{"title":"Bent Functions on Finite Nonabelian Groups and Relative Difference Sets","authors":"Bangteng Xu","doi":"10.1002/jcd.21970","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>It is well known that the perfect nonlinearity of a function between finite groups <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math> can be characterized by its graph in terms of relative difference set in the direct product <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n \n <mo>×</mo>\n \n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math> (cf. [4]). Let <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>T</mi>\n </mrow>\n </mrow>\n </semantics></math> be the infinite set of complex roots of unity. A <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>T</mi>\n </mrow>\n </mrow>\n </semantics></math>-valued function <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>f</mi>\n </mrow>\n </mrow>\n </semantics></math> on an arbitrary finite group <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is associated with a finite cyclic subgroup <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>T</mi>\n \n <mi>f</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> in the multiplicative group of nonzero complex numbers. For a bent function <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>f</mi>\n </mrow>\n </mrow>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> in general, its graph is not a relative difference set in the direct product <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n \n <mo>×</mo>\n \n <msub>\n <mi>T</mi>\n \n <mi>f</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. In this paper, we investigate the necessary and sufficient conditions under which the graph of a bent function <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>f</mi>\n </mrow>\n </mrow>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is a relative difference set in <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>G</mi>\n \n <mo>×</mo>\n \n <msub>\n <mi>T</mi>\n \n <mi>f</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. Cyclotomic fields and their integral bases play an important role in our discussions.</p>\n </div>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 4","pages":"125-136"},"PeriodicalIF":0.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21970","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is well known that the perfect nonlinearity of a function between finite groups G and H can be characterized by its graph in terms of relative difference set in the direct product G × H (cf. [4]). Let T be the infinite set of complex roots of unity. A T -valued function f on an arbitrary finite group G is associated with a finite cyclic subgroup T f in the multiplicative group of nonzero complex numbers. For a bent function f on G in general, its graph is not a relative difference set in the direct product G × T f . In this paper, we investigate the necessary and sufficient conditions under which the graph of a bent function f on G is a relative difference set in G × T f . Cyclotomic fields and their integral bases play an important role in our discussions.

有限非贝尔群和相对差分集上的弯曲函数
众所周知,有限群G和有限群H之间的函数的完全非线性可以用它的图用直接积G的相对差集来表示× H (cf.[4])。设T是无穷个单位复数根的集合。任意有限群G上的一个T值函数f与一个有限循环子群相关联T f在非零复数的乘法群中。对于f在G上的弯曲函数,它的图不是直接积G × T f的相对差集。在本文中,研究了G上的弯曲函数f的图是G ×上的相对差集的充分必要条件T。旋光场及其整体基础在我们的讨论中起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信