下载PDF
{"title":"The Directed Oberwolfach Problem With Variable Cycle Lengths: A Recursive Construction","authors":"Suzan Kadri, Mateja Šajna","doi":"10.1002/jcd.21967","DOIUrl":null,"url":null,"abstract":"<p>The directed Oberwolfach problem <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> asks whether the complete symmetric digraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mi>n</mi>\n \n <mo>*</mo>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math>, assuming <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>+</mo>\n \n <mi>⋯</mi>\n \n <mo>+</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, admits a decomposition into spanning subdigraphs, each a disjoint union of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> directed cycles of lengths <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. We hereby describe a method for constructing a solution to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> given a solution to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>ℓ</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, for some <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo><</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>, if certain conditions on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> are satisfied. This approach enables us to extend a solution for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>ℓ</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> into a solution for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>ℓ</mi>\n </msub>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, as well as into a solution for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>ℓ</mi>\n </msub>\n \n <mo>,</mo>\n \n <msup>\n <mn>2</mn>\n \n <mrow>\n <mo>〈</mo>\n \n <mi>t</mi>\n \n <mo>〉</mo>\n </mrow>\n </msup>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mn>2</mn>\n \n <mrow>\n <mo>〈</mo>\n \n <mi>t</mi>\n \n <mo>〉</mo>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n </semantics></math> denotes <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math> copies of 2, provided <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math> is sufficiently large. In particular, our recursive construction allows us to effectively address the two-table directed Oberwolfach problem. We show that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> has a solution for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>2</mn>\n \n <mo>≤</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>≤</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, with a definite exception of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>=</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>=</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math> and a possible exception in the case that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>4</mn>\n \n <mo>,</mo>\n \n <mn>6</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> is even, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>+</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>≥</mo>\n \n <mn>14</mn>\n </mrow>\n </mrow>\n </semantics></math>. It has been shown previously that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> has a solution if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>+</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> is odd, and that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>m</mi>\n \n <mo>,</mo>\n \n <mi>m</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> has a solution if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n \n <mo>≠</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math>. In addition to solving many other cases of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>, we show that when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>2</mn>\n \n <mo>≤</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>+</mo>\n \n <mi>⋯</mi>\n \n <mo>+</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>≤</mo>\n \n <mn>13</mn>\n </mrow>\n </mrow>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> has a solution if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∉</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mn>4</mn>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mn>6</mn>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>3</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 7","pages":"239-260"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21967","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21967","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
The directed Oberwolfach problem
OP
*
(
m
1
,
…
,
m
k
)
asks whether the complete symmetric digraph
K
n
*
, assuming
n
=
m
1
+
⋯
+
m
k
, admits a decomposition into spanning subdigraphs, each a disjoint union of
k
directed cycles of lengths
m
1
,
…
,
m
k
. We hereby describe a method for constructing a solution to
OP
*
(
m
1
,
…
,
m
k
)
given a solution to
OP
*
(
m
1
,
…
,
m
ℓ
)
, for some
ℓ
<
k
, if certain conditions on
m
1
,
…
,
m
k
are satisfied. This approach enables us to extend a solution for
OP
*
(
m
1
,
…
,
m
ℓ
)
into a solution for
OP
*
(
m
1
,
…
,
m
ℓ
,
t
)
, as well as into a solution for
OP
*
(
m
1
,
…
,
m
ℓ
,
2
〈
t
〉
)
, where
2
〈
t
〉
denotes
t
copies of 2, provided
t
is sufficiently large. In particular, our recursive construction allows us to effectively address the two-table directed Oberwolfach problem. We show that
OP
*
(
m
1
,
m
2
)
has a solution for all
2
≤
m
1
≤
m
2
, with a definite exception of
m
1
=
m
2
=
3
and a possible exception in the case that
m
1
∈
{
4
,
6
}
,
m
2
is even, and
m
1
+
m
2
≥
14
. It has been shown previously that
OP
*
(
m
1
,
m
2
)
has a solution if
m
1
+
m
2
is odd, and that
OP
*
(
m
,
m
)
has a solution if and only if
m
≠
3
. In addition to solving many other cases of
OP
*
, we show that when
2
≤
m
1
+
⋯
+
m
k
≤
13
,
OP
*
(
m
1
,
…
,
m
k
)
has a solution if and only if
(
m
1
,
…
,
m
k
)
∉
{
(
4
)
,
(
6
)
,
(
3
,
3
)
}
.