GDD类型跨越二部块设计

IF 0.5 4区 数学 Q3 MATHEMATICS
Shoko Chisaki, Ryoh Fuji-Hara, Nobuko Miyamoto
{"title":"GDD类型跨越二部块设计","authors":"Shoko Chisaki,&nbsp;Ryoh Fuji-Hara,&nbsp;Nobuko Miyamoto","doi":"10.1002/jcd.21976","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>There is a one-to-one correspondence between the point set of a group divisible design (GDD) with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> groups of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> points and the edge set of a complete bipartite graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. A block of GDD corresponds to a subgraph of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. We show that the concurrence conditions of two points of GDD can correspond to the edge concurrence conditions of subgraphs of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, which we call a GDD-type spanning bipartite block design (SBBD). We also propose a method to construct SBBD directly from an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>,</mo>\n \n <mi>λ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>-design and a difference matrix over a group. When an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>,</mo>\n \n <mi>λ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>-design with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> points has <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>b</mi>\n </mrow>\n </mrow>\n </semantics></math> blocks much larger than <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math>, a modified method is shown to construct an SBBD with fewer blocks such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> is closer to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> by partitioning the block set of the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>,</mo>\n \n <mi>λ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>-design.</p>\n </div>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 6","pages":"207-216"},"PeriodicalIF":0.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GDD Type Spanning Bipartite Block Designs\",\"authors\":\"Shoko Chisaki,&nbsp;Ryoh Fuji-Hara,&nbsp;Nobuko Miyamoto\",\"doi\":\"10.1002/jcd.21976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>There is a one-to-one correspondence between the point set of a group divisible design (GDD) with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>v</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> groups of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>v</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> points and the edge set of a complete bipartite graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <msub>\\n <mi>v</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>v</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. A block of GDD corresponds to a subgraph of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <msub>\\n <mi>v</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>v</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. We show that the concurrence conditions of two points of GDD can correspond to the edge concurrence conditions of subgraphs of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <msub>\\n <mi>v</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>v</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>, which we call a GDD-type spanning bipartite block design (SBBD). We also propose a method to construct SBBD directly from an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>,</mo>\\n \\n <mi>λ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>-design and a difference matrix over a group. When an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>,</mo>\\n \\n <mi>λ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>-design with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> points has <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>b</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> blocks much larger than <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, a modified method is shown to construct an SBBD with fewer blocks such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>v</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> is closer to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>v</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> by partitioning the block set of the <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>,</mo>\\n \\n <mi>λ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>-design.</p>\\n </div>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"33 6\",\"pages\":\"207-216\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21976\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21976","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

群可分设计(GDD)的点集与v 2的v 1组之间存在一一对应关系点和完全二部图kv1的边集,V 2。GDD的一个块对应于kv1的一个子图,V 2。我们证明了GDD两点的并发条件可以对应于kv1的子图的边并发条件,我们称之为gdd型跨二部块设计(SBBD)。我们还提出了一种直接从(r)构造SBBD的方法,λ) -设计和群上的差分矩阵。 当an (r)λ) -设计与v点有b块大得多而v,提出了一种改进的方法来构造一个块数更少的SBBD,使v1更接近v2通过划分(r)的块集,λ) -设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GDD Type Spanning Bipartite Block Designs

There is a one-to-one correspondence between the point set of a group divisible design (GDD) with v 1 groups of v 2 points and the edge set of a complete bipartite graph K v 1 , v 2 . A block of GDD corresponds to a subgraph of K v 1 , v 2 . We show that the concurrence conditions of two points of GDD can correspond to the edge concurrence conditions of subgraphs of K v 1 , v 2 , which we call a GDD-type spanning bipartite block design (SBBD). We also propose a method to construct SBBD directly from an ( r , λ ) -design and a difference matrix over a group. When an ( r , λ ) -design with v points has b blocks much larger than v , a modified method is shown to construct an SBBD with fewer blocks such that v 1 is closer to v 2 by partitioning the block set of the ( r , λ ) -design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信