求助PDF
{"title":"GDD类型跨越二部块设计","authors":"Shoko Chisaki, Ryoh Fuji-Hara, Nobuko Miyamoto","doi":"10.1002/jcd.21976","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>There is a one-to-one correspondence between the point set of a group divisible design (GDD) with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> groups of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> points and the edge set of a complete bipartite graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. A block of GDD corresponds to a subgraph of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. We show that the concurrence conditions of two points of GDD can correspond to the edge concurrence conditions of subgraphs of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, which we call a GDD-type spanning bipartite block design (SBBD). We also propose a method to construct SBBD directly from an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>,</mo>\n \n <mi>λ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>-design and a difference matrix over a group. When an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>,</mo>\n \n <mi>λ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>-design with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> points has <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>b</mi>\n </mrow>\n </mrow>\n </semantics></math> blocks much larger than <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math>, a modified method is shown to construct an SBBD with fewer blocks such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> is closer to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> by partitioning the block set of the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>,</mo>\n \n <mi>λ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>-design.</p>\n </div>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 6","pages":"207-216"},"PeriodicalIF":0.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GDD Type Spanning Bipartite Block Designs\",\"authors\":\"Shoko Chisaki, Ryoh Fuji-Hara, Nobuko Miyamoto\",\"doi\":\"10.1002/jcd.21976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>There is a one-to-one correspondence between the point set of a group divisible design (GDD) with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>v</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> groups of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>v</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> points and the edge set of a complete bipartite graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <msub>\\n <mi>v</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>v</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. A block of GDD corresponds to a subgraph of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <msub>\\n <mi>v</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>v</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. We show that the concurrence conditions of two points of GDD can correspond to the edge concurrence conditions of subgraphs of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <msub>\\n <mi>v</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>v</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>, which we call a GDD-type spanning bipartite block design (SBBD). We also propose a method to construct SBBD directly from an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>,</mo>\\n \\n <mi>λ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>-design and a difference matrix over a group. When an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>,</mo>\\n \\n <mi>λ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>-design with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> points has <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>b</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> blocks much larger than <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, a modified method is shown to construct an SBBD with fewer blocks such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>v</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> is closer to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>v</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> by partitioning the block set of the <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>r</mi>\\n \\n <mo>,</mo>\\n \\n <mi>λ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>-design.</p>\\n </div>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"33 6\",\"pages\":\"207-216\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21976\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21976","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用