{"title":"On MSRD Codes, h-Designs and Disjoint Maximum Scattered Linear Sets","authors":"Paolo Santonastaso, John Sheekey","doi":"10.1002/jcd.21972","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we construct new optimal subspace designs and, consequently, new optimal codes in the sum-rank metric. We construct new 1-designs by finding sets of disjoint maximum scattered linear sets, and use these constructions to also find new <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>h</mi>\n </mrow>\n </mrow>\n </semantics></math>-designs for <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>h</mi>\n <mo>></mo>\n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math>. As a means of achieving this, we establish a correspondence between the metric properties of sum-rank metric codes and the geometric properties of subspace designs. Specifically, we determine the geometric counterpart of the coding-theoretic notion of generalised weights for the sum-rank metric in terms of subspace designs and determine a geometric characterisation of MSRD codes. This enables us to characterise subspace designs via their intersections with hyperplanes and via duality operations.</p>\n </div>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 4","pages":"137-155"},"PeriodicalIF":0.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21972","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we construct new optimal subspace designs and, consequently, new optimal codes in the sum-rank metric. We construct new 1-designs by finding sets of disjoint maximum scattered linear sets, and use these constructions to also find new -designs for . As a means of achieving this, we establish a correspondence between the metric properties of sum-rank metric codes and the geometric properties of subspace designs. Specifically, we determine the geometric counterpart of the coding-theoretic notion of generalised weights for the sum-rank metric in terms of subspace designs and determine a geometric characterisation of MSRD codes. This enables us to characterise subspace designs via their intersections with hyperplanes and via duality operations.
期刊介绍:
The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including:
block designs, t-designs, pairwise balanced designs and group divisible designs
Latin squares, quasigroups, and related algebras
computational methods in design theory
construction methods
applications in computer science, experimental design theory, and coding theory
graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics
finite geometry and its relation with design theory.
algebraic aspects of design theory.
Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.