Cycle Switching in Steiner Triple Systems of Order 19

IF 0.5 4区 数学 Q3 MATHEMATICS
Grahame Erskine, Terry S. Griggs
{"title":"Cycle Switching in Steiner Triple Systems of Order 19","authors":"Grahame Erskine,&nbsp;Terry S. Griggs","doi":"10.1002/jcd.21975","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cycle switching is a particular form of transformation applied to isomorphism classes of a Steiner triple system of a given order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> (an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>STS</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>), yielding another <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>STS</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. This relationship may be represented by an undirected graph. An <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>STS</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> admits cycles of lengths <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>4</mn>\n \n <mo>,</mo>\n \n <mn>6</mn>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <mi>v</mi>\n \n <mo>−</mo>\n \n <mn>7</mn>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n \n <mo>−</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math>. In the particular case of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n \n <mo>=</mo>\n \n <mn>19</mn>\n </mrow>\n </mrow>\n </semantics></math>, it is known that the full switching graph, allowing the switching of cycles of any length, is connected. We show that if we restrict switching to only one of the possible cycle lengths, in all cases, the switching graph is disconnected (even if we ignore those <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>STS</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mn>19</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>s, which have no cycle of the given length). Moreover, in a number of cases we find intriguing connected components in the switching graphs, which exhibit unexpected symmetries. Our method utilizes an algorithm for determining connected components in a very large implicitly defined graph which is more efficient than previous approaches, avoiding the necessity of computing canonical labelings for a large proportion of the systems.</p>\n </div>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 5","pages":"195-204"},"PeriodicalIF":0.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21975","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cycle switching is a particular form of transformation applied to isomorphism classes of a Steiner triple system of a given order v (an STS ( v ) ), yielding another STS ( v ) . This relationship may be represented by an undirected graph. An STS ( v ) admits cycles of lengths 4 , 6 , , v 7 and v 3 . In the particular case of v = 19 , it is known that the full switching graph, allowing the switching of cycles of any length, is connected. We show that if we restrict switching to only one of the possible cycle lengths, in all cases, the switching graph is disconnected (even if we ignore those STS ( 19 ) s, which have no cycle of the given length). Moreover, in a number of cases we find intriguing connected components in the switching graphs, which exhibit unexpected symmetries. Our method utilizes an algorithm for determining connected components in a very large implicitly defined graph which is more efficient than previous approaches, avoiding the necessity of computing canonical labelings for a large proportion of the systems.

19阶Steiner三重系统的循环切换
循环交换是应用于给定阶v(和STS (v)的Steiner三重系统同构类的一种特殊变换形式)),产生另一个化粪池系统(v)。这种关系可以用无向图来表示。STS (v)允许长度为4的循环,6、……V−7和V−3。在v = 19的特殊情况下,已知允许任意长度的循环切换的全切换图是连通的。我们证明,如果我们只限制切换到一个可能的周期长度,在所有情况下,切换图是断开的(即使我们忽略那些STS (19) s),它们没有给定长度的循环)。此外,在许多情况下,我们发现在切换图中有趣的连接组件,它们表现出意想不到的对称性。我们的方法利用一种算法来确定一个非常大的隐式定义图中的连接组件,这比以前的方法更有效,避免了对大部分系统计算规范标记的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信