Pairs in Nested Steiner Quadruple Systems

IF 0.5 4区 数学 Q3 MATHEMATICS
Yeow Meng Chee, Son Hoang Dau, Tuvi Etzion, Han Mao Kiah, Wenqin Zhang
{"title":"Pairs in Nested Steiner Quadruple Systems","authors":"Yeow Meng Chee,&nbsp;Son Hoang Dau,&nbsp;Tuvi Etzion,&nbsp;Han Mao Kiah,&nbsp;Wenqin Zhang","doi":"10.1002/jcd.21973","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Motivated by a repair problem for fractional repetition codes in distributed storage, each block of any Steiner quadruple system (SQS) of order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> is partitioned into two pairs. Each pair in such a partition is called a nested design pair, and its multiplicity is the number of times it is a pair in this partition. Such a partition of each block is considered a new block design called a nested SQS. Several related questions on this type of design are considered in this paper: What is the maximum multiplicity of the nested design pair with minimum multiplicity? What is the minimum multiplicity of the nested design pair with maximum multiplicity? Are there nested quadruple systems in which all the nested design pairs have the same multiplicity? Of special interest are nested quadruple systems in which all the <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfenced>\n <mfrac>\n <mi>v</mi>\n \n <mn>2</mn>\n </mfrac>\n </mfenced>\n </mrow>\n </mrow>\n </semantics></math> pairs are nested design pairs with the same multiplicity. Several constructions of nested quadruple systems are considered, and in particular, classic constructions of SQS are examined.</p>\n </div>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 5","pages":"177-187"},"PeriodicalIF":0.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21973","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by a repair problem for fractional repetition codes in distributed storage, each block of any Steiner quadruple system (SQS) of order v is partitioned into two pairs. Each pair in such a partition is called a nested design pair, and its multiplicity is the number of times it is a pair in this partition. Such a partition of each block is considered a new block design called a nested SQS. Several related questions on this type of design are considered in this paper: What is the maximum multiplicity of the nested design pair with minimum multiplicity? What is the minimum multiplicity of the nested design pair with maximum multiplicity? Are there nested quadruple systems in which all the nested design pairs have the same multiplicity? Of special interest are nested quadruple systems in which all the v 2 pairs are nested design pairs with the same multiplicity. Several constructions of nested quadruple systems are considered, and in particular, classic constructions of SQS are examined.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信