{"title":"Mutual incidence matrix of two balanced incomplete block designs","authors":"Alexander Shramchenko, Vasilisa Shramchenko","doi":"10.1002/jcd.21949","DOIUrl":"https://doi.org/10.1002/jcd.21949","url":null,"abstract":"<p>We propose to consider a mutual incidence matrix <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $M$</annotation>\u0000 </semantics></math> of two balanced incomplete block designs built on the same finite set. In the simplest case, this matrix reduces to the standard incidence matrix of one block design. We find all eigenvalues of the matrices <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>M</mi>\u0000 \u0000 <msup>\u0000 <mi>M</mi>\u0000 \u0000 <mi>T</mi>\u0000 </msup>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $M{M}^{T}$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mi>M</mi>\u0000 \u0000 <mi>T</mi>\u0000 </msup>\u0000 \u0000 <mi>M</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${M}^{T}M$</annotation>\u0000 </semantics></math> and their eigenspaces.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 10","pages":"579-590"},"PeriodicalIF":0.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21949","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Infinite series of 3-designs in the extended quadratic residue code","authors":"Madoka Awada","doi":"10.1002/jcd.21950","DOIUrl":"https://doi.org/10.1002/jcd.21950","url":null,"abstract":"<p>In this paper, we show an infinite series of 3-designs in the extended quadratic residue codes over <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>F</mi>\u0000 \u0000 <msup>\u0000 <mi>r</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msup>\u0000 </msub>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${{mathbb{F}}}_{{r}^{2}}$</annotation>\u0000 </semantics></math> for a prime <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>r</mi>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $r$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 10","pages":"591-605"},"PeriodicalIF":0.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Oberwolfach problem with loving couples","authors":"Gloria Rinaldi","doi":"10.1002/jcd.21946","DOIUrl":"10.1002/jcd.21946","url":null,"abstract":"<p>We generalize the well-known Oberwolfach problem posed by Ringel in 1967. We suppose to have <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mfrac>\u0000 <mi>v</mi>\u0000 \u0000 <mn>2</mn>\u0000 </mfrac>\u0000 </mrow>\u0000 <annotation> $frac{v}{2}$</annotation>\u0000 </semantics></math> couples (here <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>4</mn>\u0000 </mrow>\u0000 <annotation> $vge 4$</annotation>\u0000 </semantics></math> is an even integer) and suppose that they have to be seated for several nights at <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $t$</annotation>\u0000 </semantics></math> round tables in such a way that each person seats next to his partner exactly <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation> $rge 0$</annotation>\u0000 </semantics></math> times and next to every other person exactly once. We call this problem the Oberwolfach problem with loving couples. When <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation> $r=0$</annotation>\u0000 </semantics></math>, the problem coincides with the so-called spouse-avoiding variant, which was introduced by Huang, Kotzig, and Rosa in 1979. While if either <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation> $r=2$</annotation>\u0000 </semantics></math> or <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 </mrow>\u0000 <annotation> $r$</annotation>\u0000 </semantics></math> equals the number of nights, it corresponds to the spouse-loving variant or to the Honeymoon variant, which was recently studied by Bolohan et al. and by Lepine and Sajna, respectively. In this paper, for each possible choice of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 </mrow>\u0000 <annotation> $r$</annotation>\u0000 </semantics></math>, we construct many classes of solutions to the Oberwolfach problem with loving couples. We also obtain new solutions to the Honeymoon variant.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 9","pages":"532-545"},"PeriodicalIF":0.5,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141120940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multifold 1-perfect codes","authors":"Denis S. Krotov","doi":"10.1002/jcd.21947","DOIUrl":"10.1002/jcd.21947","url":null,"abstract":"<p>A multifold 1-perfect code (1-perfect code for list decoding) in any graph is a set <span></span><math>\u0000 \u0000 <semantics>\u0000 \u0000 <mrow>\u0000 \u0000 <mi>C</mi>\u0000 </mrow>\u0000 \u0000 <annotation>\u0000 $C$\u0000</annotation>\u0000 </semantics>\u0000 </math> of vertices such that every vertex of the graph is at distance not more than 1 from exactly <span></span><math>\u0000 \u0000 <semantics>\u0000 \u0000 <mrow>\u0000 \u0000 <mi>μ</mi>\u0000 </mrow>\u0000 \u0000 <annotation>\u0000 $mu $\u0000</annotation>\u0000 </semantics>\u0000 </math> elements of <span></span><math>\u0000 \u0000 <semantics>\u0000 \u0000 <mrow>\u0000 \u0000 <mi>C</mi>\u0000 </mrow>\u0000 \u0000 <annotation>\u0000 $C$\u0000</annotation>\u0000 </semantics>\u0000 </math>. In <span></span><math>\u0000 \u0000 <semantics>\u0000 \u0000 <mrow>\u0000 \u0000 <mi>q</mi>\u0000 </mrow>\u0000 \u0000 <annotation>\u0000 $q$\u0000</annotation>\u0000 </semantics>\u0000 </math>-ary Hamming graphs, where <span></span><math>\u0000 \u0000 <semantics>\u0000 \u0000 <mrow>\u0000 \u0000 <mi>q</mi>\u0000 </mrow>\u0000 \u0000 <annotation>\u0000 $q$\u0000</annotation>\u0000 </semantics>\u0000 </math> is a prime power, we characterize all parameters of multifold 1-perfect codes and all parameters of additive multifold 1-perfect codes. In particular, we show that additive multifold 1-perfect codes are related to special multiset generalizations of spreads, multispreads, and that multispreads of parameters corresponding to multifold 1-perfect codes always exist.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 9","pages":"546-555"},"PeriodicalIF":0.5,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141147910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suyun Ding, Yilin Zhang, Xiaoqin Zhan, Guangzu Chen
{"title":"Block-transitive triple systems with sporadic or alternating socle","authors":"Suyun Ding, Yilin Zhang, Xiaoqin Zhan, Guangzu Chen","doi":"10.1002/jcd.21945","DOIUrl":"10.1002/jcd.21945","url":null,"abstract":"<p>This paper is a contribution to the classification of all pairs <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>G</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation> $({mathscr{T}},G)$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{T}}$</annotation>\u0000 </semantics></math> is a triple system and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is a block-transitive but not flag-transitive automorphism group of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{T}}$</annotation>\u0000 </semantics></math>. We prove that if the socle of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is a sporadic or alternating group, then one of the following holds:\u0000\u0000 </p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 9","pages":"521-531"},"PeriodicalIF":0.5,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141121084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On products of strong Skolem starters","authors":"Oleg Ogandzhanyants, Margarita Kondratieva, Nabil Shalaby","doi":"10.1002/jcd.21943","DOIUrl":"10.1002/jcd.21943","url":null,"abstract":"<p>In 1991, Shalaby conjectured that any <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>Z</mi>\u0000 \u0000 <mi>n</mi>\u0000 </msub>\u0000 </mrow></math>, where <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>n</mi>\u0000 \u0000 <mo>≡</mo>\u0000 \u0000 <mn>1</mn>\u0000 </mrow></math> or <span></span><math>\u0000 \u0000 <mrow>\u0000 <mn>3</mn>\u0000 <mspace></mspace>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>mod</mi>\u0000 <mspace></mspace>\u0000 \u0000 <mn>8</mn>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>n</mi>\u0000 \u0000 <mo>≥</mo>\u0000 \u0000 <mn>11</mn>\u0000 </mrow></math>, admits a strong Skolem starter. In 2018, the authors fully described and explicitly constructed the infinite “cardioidal” family of strong Skolem starters. No other infinite family of these combinatorial designs was known to date. Statements regarding the products of starters, proven in this paper give a new way of generating strong or skew Skolem starters of composite orders. This approach extends our previous result by generating new infinite families of these starters that are not cardioidal.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 8","pages":"464-487"},"PeriodicalIF":0.7,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New results on large sets of orthogonal arrays and orthogonal arrays","authors":"Guangzhou Chen, Xiaodong Niu, Jiufeng Shi","doi":"10.1002/jcd.21944","DOIUrl":"10.1002/jcd.21944","url":null,"abstract":"<p>Orthogonal array and a large set of orthogonal arrays are important research objects in combinatorial design theory, and they are widely applied to statistics, computer science, coding theory, and cryptography. In this paper, some new series of large sets of orthogonal arrays are given by direct construction, juxtaposition construction, Hadamard construction, finite field construction, and difference matrix construction. Subsequently, many new infinite classes of orthogonal arrays are obtained by using these large sets of orthogonal arrays and Kronecker product.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 8","pages":"488-515"},"PeriodicalIF":0.7,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On equitably 2-colourable odd cycle decompositions","authors":"Andrea Burgess, Francesca Merola","doi":"10.1002/jcd.21937","DOIUrl":"10.1002/jcd.21937","url":null,"abstract":"<p>An <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 </mrow></math>-cycle decomposition of <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>K</mi>\u0000 \u0000 <mi>v</mi>\u0000 </msub>\u0000 </mrow></math> is said to be <i>equitably 2-colourable</i> if there is a 2-vertex-colouring of <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>K</mi>\u0000 \u0000 <mi>v</mi>\u0000 </msub>\u0000 </mrow></math> such that each colour is represented (approximately) an equal number of times on each cycle: more precisely, we ask that in each cycle <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>C</mi>\u0000 </mrow></math> of the decomposition, each colour appears on <span></span><math>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>⌊</mo>\u0000 \u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 \u0000 <mo>∕</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 \u0000 <mo>⌋</mo>\u0000 </mrow>\u0000 </mrow></math> or <span></span><math>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>⌈</mo>\u0000 \u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 \u0000 <mo>∕</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 \u0000 <mo>⌉</mo>\u0000 </mrow>\u0000 </mrow></math> of the vertices of <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>C</mi>\u0000 </mrow></math>. In this paper we study the existence of equitably 2-colourable <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 </mrow></math>-cycle decompositions of <span></span><math>\u0000 \u0000 <mrow>\u0000 <msub>\u0000 <mi>K</mi>\u0000 \u0000 <mi>v</mi>\u0000 </msub>\u0000 </mrow></math>, where <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 </mrow></math> is odd, and prove the existence of such a decomposition for <span></span><math>\u0000 \u0000 <mrow>\u0000 <mi>v</mi>\u0000 \u0000 <mo>≡</mo>\u0000 \u0000 <mn>1</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>ℓ</mi>\u0000 </mrow></math> (mod <span></span><math>\u0000 \u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 8","pages":"419-437"},"PeriodicalIF":0.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21937","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140630988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}