Characterising ovoidal cones by their hyperplane intersection numbers

IF 0.5 4区 数学 Q3 MATHEMATICS
Bart De Bruyn, Geertrui Van de Voorde
{"title":"Characterising ovoidal cones by their hyperplane intersection numbers","authors":"Bart De Bruyn,&nbsp;Geertrui Van de Voorde","doi":"10.1002/jcd.21959","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we characterise point sets having the same intersection numbers with respect to hyperplanes as an ovoidal cone. In particular, we show that a set of points of <span></span><math>\n <semantics>\n <mrow>\n <mtext>PG</mtext>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>4</mn>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{PG}(4,q)$</annotation>\n </semantics></math> which blocks all planes and intersects solids in <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $q+1$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>q</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> ${q}^{2}+1$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>q</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>+</mo>\n \n <mi>q</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> ${q}^{2}+q+1$</annotation>\n </semantics></math> points is a plane or an ovoidal cone, and determine all examples that arise when the blocking condition is omitted.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 1","pages":"5-26"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21959","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21959","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we characterise point sets having the same intersection numbers with respect to hyperplanes as an ovoidal cone. In particular, we show that a set of points of PG ( 4 , q ) $\text{PG}(4,q)$ which blocks all planes and intersects solids in q + 1 $q+1$ , q 2 + 1 ${q}^{2}+1$ or q 2 + q + 1 ${q}^{2}+q+1$ points is a plane or an ovoidal cone, and determine all examples that arise when the blocking condition is omitted.

通过超平面相交数确定卵圆锥的特征
在本文中,我们描述了相对于超平面具有与卵圆锥相同交点数的点集的特征。特别是,我们证明了 PG ( 4 , q ) $\text{PG}(4,q)$ 的点集阻塞所有平面并与实体相交于 q + 1 $q+1$ 、q 2 + 1 ${q}^{2}+1$ 或 q 2 + q + 1 ${q}^{2}+q+1$ 点是平面或卵圆锥,并确定了省略阻塞条件时出现的所有例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信