Completely reducible super-simple ( v , 4 , 4 ) $(v,4,4)$ -BIBDs and related constant weight codes

IF 0.5 4区 数学 Q3 MATHEMATICS
Jingyuan Chen, Huangsheng Yu, R. Julian R. Abel, Dianhua Wu
{"title":"Completely reducible super-simple \n \n \n (\n \n v\n ,\n 4\n ,\n 4\n \n )\n \n $(v,4,4)$\n -BIBDs and related constant weight codes","authors":"Jingyuan Chen,&nbsp;Huangsheng Yu,&nbsp;R. Julian R. Abel,&nbsp;Dianhua Wu","doi":"10.1002/jcd.21958","DOIUrl":null,"url":null,"abstract":"<p>A design is said to be <i>super-simple</i> if the intersection of any two blocks has at most two elements. A design with index <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <annotation> $\\lambda $</annotation>\n </semantics></math> is said to be <i>completely reducible</i>, if its blocks can be partitioned into nonempty collections <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>B</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>,</mo>\n \n <mn>1</mn>\n \n <mo>≤</mo>\n \n <mi>i</mi>\n \n <mo>≤</mo>\n \n <mi>λ</mi>\n </mrow>\n <annotation> ${{\\mathscr{B}}}_{i},1\\le i\\le \\lambda $</annotation>\n </semantics></math>, such that each <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>B</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${{\\mathscr{B}}}_{i}$</annotation>\n </semantics></math> together with the point set forms a design with index unity. In this paper, it is proved that there exists a completely reducible super-simple (CRSS) <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>v</mi>\n \n <mo>,</mo>\n \n <mn>4</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(v,4,4)$</annotation>\n </semantics></math> balanced incomplete block design (<span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>v</mi>\n \n <mo>,</mo>\n \n <mn>4</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(v,4,4)$</annotation>\n </semantics></math>-BIBD for short) if and only if <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n \n <mo>≥</mo>\n \n <mn>13</mn>\n </mrow>\n <annotation> $v\\ge 13$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n \n <mo>≡</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $v\\equiv 1$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n <mn>4</mn>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>mod</mi>\n <mspace></mspace>\n \n <mn>12</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $4\\,(\\mathrm{mod}\\,12)$</annotation>\n </semantics></math>. A <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math>-ary constant weight code (CWC) of length <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math> with weight <span></span><math>\n <semantics>\n <mrow>\n <mi>w</mi>\n </mrow>\n <annotation> $w$</annotation>\n </semantics></math> and distance <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math> is denoted as a <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>v</mi>\n \n <mo>,</mo>\n \n <mi>d</mi>\n \n <mo>,</mo>\n \n <mi>w</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> ${(v,d,w)}_{q}$</annotation>\n </semantics></math> code. The maximum size of a <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>v</mi>\n \n <mo>,</mo>\n \n <mi>d</mi>\n \n <mo>,</mo>\n \n <mi>w</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> ${(v,d,w)}_{q}$</annotation>\n </semantics></math> code is denoted as <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>A</mi>\n \n <mi>q</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>v</mi>\n \n <mo>,</mo>\n \n <mi>d</mi>\n \n <mo>,</mo>\n \n <mi>w</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${A}_{q}(v,d,w)$</annotation>\n </semantics></math>, and the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>v</mi>\n \n <mo>,</mo>\n \n <mi>d</mi>\n \n <mo>,</mo>\n \n <mi>w</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> ${(v,d,w)}_{q}$</annotation>\n </semantics></math> codes achieving this size are called <i>optimal</i>. CRSS designs with index <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $q-1$</annotation>\n </semantics></math> are closely related to <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math>-ary CWCs. By using the results of CRSS <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>v</mi>\n \n <mo>,</mo>\n \n <mn>4</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(v,4,4)$</annotation>\n </semantics></math>-BIBDs, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>A</mi>\n \n <mn>5</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>v</mi>\n \n <mo>,</mo>\n \n <mn>6</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${A}_{5}(v,6,4)$</annotation>\n </semantics></math>s are determined for all <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n \n <mo>≡</mo>\n \n <mn>0</mn>\n \n <mo>,</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>mod</mi>\n <mspace></mspace>\n \n <mn>12</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mi>v</mi>\n \n <mo>≥</mo>\n \n <mn>12</mn>\n </mrow>\n <annotation> $v\\equiv 0,1,3,4\\,(\\mathrm{mod}\\,12),v\\ge 12$</annotation>\n </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 1","pages":"27-36"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21958","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A design is said to be super-simple if the intersection of any two blocks has at most two elements. A design with index λ $\lambda $ is said to be completely reducible, if its blocks can be partitioned into nonempty collections B i , 1 i λ ${{\mathscr{B}}}_{i},1\le i\le \lambda $ , such that each B i ${{\mathscr{B}}}_{i}$ together with the point set forms a design with index unity. In this paper, it is proved that there exists a completely reducible super-simple (CRSS) ( v , 4 , 4 ) $(v,4,4)$ balanced incomplete block design ( ( v , 4 , 4 ) $(v,4,4)$ -BIBD for short) if and only if v 13 $v\ge 13$ and v 1 $v\equiv 1$ or 4 ( mod 12 ) $4\,(\mathrm{mod}\,12)$ . A q $q$ -ary constant weight code (CWC) of length v $v$ with weight w $w$ and distance d $d$ is denoted as a ( v , d , w ) q ${(v,d,w)}_{q}$ code. The maximum size of a ( v , d , w ) q ${(v,d,w)}_{q}$ code is denoted as A q ( v , d , w ) ${A}_{q}(v,d,w)$ , and the ( v , d , w ) q ${(v,d,w)}_{q}$ codes achieving this size are called optimal. CRSS designs with index q 1 $q-1$ are closely related to q $q$ -ary CWCs. By using the results of CRSS ( v , 4 , 4 ) $(v,4,4)$ -BIBDs, A 5 ( v , 6 , 4 ) ${A}_{5}(v,6,4)$ s are determined for all v 0 , 1 , 3 , 4 ( mod 12 ) , v 12 $v\equiv 0,1,3,4\,(\mathrm{mod}\,12),v\ge 12$ .

完全还原的超简单 ( v , 4 , 4 ) $(v,4,4)$ -BIBD 及相关恒权码
( v , d , w ) q ${(v,d,w)}_{q}$ 编码的最大大小记为 A q ( v , d , w ) ${A}_{q}(v,d,w)$ ,达到这一大小的 ( v , d , w ) q ${(v,d,w)}_{q}$ 编码称为最优编码。索引为 q - 1 $q-1$ 的 CRSS 设计与 q $q$ -ary CWC 密切相关。利用 CRSS ( v , 4 , 4 ) $(v,4,4)$ -BIBDs 的结果,可以确定 A 5 ( v , 6 , 4 ) ${A}_{5}(v,6,4)$ s 适用于所有 v ≡ 0 , 1 , 3 , 4 ( mod 12 ) , v ≥ 12 $v\equiv 0,1,3,4\,(\mathrm{mod}\,12),v\ge 12$ .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信