Tic-Tac-Toe on Designs

IF 0.5 4区 数学 Q3 MATHEMATICS
Peter Danziger, Melissa A. Huggan, Rehan Malik, Trent G. Marbach
{"title":"Tic-Tac-Toe on Designs","authors":"Peter Danziger,&nbsp;Melissa A. Huggan,&nbsp;Rehan Malik,&nbsp;Trent G. Marbach","doi":"10.1002/jcd.21961","DOIUrl":null,"url":null,"abstract":"<p>We consider playing the game of Tic-Tac-Toe on block designs BIBD<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>v</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>λ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(v,k,\\lambda )$</annotation>\n </semantics></math> and transversal designs TD<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(k,n)$</annotation>\n </semantics></math>. Players take turns choosing points and the first player to complete a block wins the game. We show that triple systems, BIBD<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>v</mi>\n \n <mo>,</mo>\n \n <mn>3</mn>\n \n <mo>,</mo>\n \n <mi>λ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(v,3,\\lambda )$</annotation>\n </semantics></math>, are a first-player win if and only if <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n \n <mo>≥</mo>\n \n <mn>5</mn>\n </mrow>\n <annotation> $v\\ge 5$</annotation>\n </semantics></math>. Further, we show that for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n <annotation> $k=2,3$</annotation>\n </semantics></math>, TD<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(k,n)$</annotation>\n </semantics></math> is a first-player win if and only if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <mi>k</mi>\n </mrow>\n <annotation> $n\\ge k$</annotation>\n </semantics></math>. We also consider a <i>weak</i> version of the game, called Maker–Breaker, in which the second player wins if they can stop the first player from winning. In this case, we adapt known bounds for when either the first or second player can win on BIBD<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>v</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(v,k,1)$</annotation>\n </semantics></math> and TD<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(k,n)$</annotation>\n </semantics></math>, and show that for Maker–Breaker, BIBD<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>v</mi>\n \n <mo>,</mo>\n \n <mn>4</mn>\n \n <mo>,</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(v,4,1)$</annotation>\n </semantics></math> is a first-player win if and only if <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n \n <mo>≥</mo>\n \n <mn>16</mn>\n </mrow>\n <annotation> $v\\ge 16$</annotation>\n </semantics></math>. We show that TD<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>4</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(4,4)$</annotation>\n </semantics></math> is a second-player win, and so the second player can force a draw in the regular game by playing the same strategy.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 2","pages":"58-71"},"PeriodicalIF":0.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21961","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21961","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider playing the game of Tic-Tac-Toe on block designs BIBD ( v , k , λ ) $(v,k,\lambda )$ and transversal designs TD ( k , n ) $(k,n)$ . Players take turns choosing points and the first player to complete a block wins the game. We show that triple systems, BIBD ( v , 3 , λ ) $(v,3,\lambda )$ , are a first-player win if and only if v 5 $v\ge 5$ . Further, we show that for k = 2 , 3 $k=2,3$ , TD ( k , n ) $(k,n)$ is a first-player win if and only if n k $n\ge k$ . We also consider a weak version of the game, called Maker–Breaker, in which the second player wins if they can stop the first player from winning. In this case, we adapt known bounds for when either the first or second player can win on BIBD ( v , k , 1 ) $(v,k,1)$ and TD ( k , n ) $(k,n)$ , and show that for Maker–Breaker, BIBD ( v , 4 , 1 ) $(v,4,1)$ is a first-player win if and only if v 16 $v\ge 16$ . We show that TD ( 4 , 4 ) $(4,4)$ is a second-player win, and so the second player can force a draw in the regular game by playing the same strategy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信