设计上的井字游戏

IF 0.5 4区 数学 Q3 MATHEMATICS
Peter Danziger, Melissa A. Huggan, Rehan Malik, Trent G. Marbach
{"title":"设计上的井字游戏","authors":"Peter Danziger,&nbsp;Melissa A. Huggan,&nbsp;Rehan Malik,&nbsp;Trent G. Marbach","doi":"10.1002/jcd.21961","DOIUrl":null,"url":null,"abstract":"<p>We consider playing the game of Tic-Tac-Toe on block designs BIBD<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>v</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>λ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(v,k,\\lambda )$</annotation>\n </semantics></math> and transversal designs TD<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(k,n)$</annotation>\n </semantics></math>. Players take turns choosing points and the first player to complete a block wins the game. We show that triple systems, BIBD<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>v</mi>\n \n <mo>,</mo>\n \n <mn>3</mn>\n \n <mo>,</mo>\n \n <mi>λ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(v,3,\\lambda )$</annotation>\n </semantics></math>, are a first-player win if and only if <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n \n <mo>≥</mo>\n \n <mn>5</mn>\n </mrow>\n <annotation> $v\\ge 5$</annotation>\n </semantics></math>. Further, we show that for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n <annotation> $k=2,3$</annotation>\n </semantics></math>, TD<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(k,n)$</annotation>\n </semantics></math> is a first-player win if and only if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <mi>k</mi>\n </mrow>\n <annotation> $n\\ge k$</annotation>\n </semantics></math>. We also consider a <i>weak</i> version of the game, called Maker–Breaker, in which the second player wins if they can stop the first player from winning. In this case, we adapt known bounds for when either the first or second player can win on BIBD<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>v</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(v,k,1)$</annotation>\n </semantics></math> and TD<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(k,n)$</annotation>\n </semantics></math>, and show that for Maker–Breaker, BIBD<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>v</mi>\n \n <mo>,</mo>\n \n <mn>4</mn>\n \n <mo>,</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(v,4,1)$</annotation>\n </semantics></math> is a first-player win if and only if <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n \n <mo>≥</mo>\n \n <mn>16</mn>\n </mrow>\n <annotation> $v\\ge 16$</annotation>\n </semantics></math>. We show that TD<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>4</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(4,4)$</annotation>\n </semantics></math> is a second-player win, and so the second player can force a draw in the regular game by playing the same strategy.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 2","pages":"58-71"},"PeriodicalIF":0.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21961","citationCount":"0","resultStr":"{\"title\":\"Tic-Tac-Toe on Designs\",\"authors\":\"Peter Danziger,&nbsp;Melissa A. Huggan,&nbsp;Rehan Malik,&nbsp;Trent G. Marbach\",\"doi\":\"10.1002/jcd.21961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider playing the game of Tic-Tac-Toe on block designs BIBD<span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>v</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>λ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(v,k,\\\\lambda )$</annotation>\\n </semantics></math> and transversal designs TD<span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(k,n)$</annotation>\\n </semantics></math>. Players take turns choosing points and the first player to complete a block wins the game. We show that triple systems, BIBD<span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>v</mi>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n \\n <mo>,</mo>\\n \\n <mi>λ</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(v,3,\\\\lambda )$</annotation>\\n </semantics></math>, are a first-player win if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>5</mn>\\n </mrow>\\n <annotation> $v\\\\ge 5$</annotation>\\n </semantics></math>. Further, we show that for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n <annotation> $k=2,3$</annotation>\\n </semantics></math>, TD<span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(k,n)$</annotation>\\n </semantics></math> is a first-player win if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>≥</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n <annotation> $n\\\\ge k$</annotation>\\n </semantics></math>. We also consider a <i>weak</i> version of the game, called Maker–Breaker, in which the second player wins if they can stop the first player from winning. In this case, we adapt known bounds for when either the first or second player can win on BIBD<span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>v</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(v,k,1)$</annotation>\\n </semantics></math> and TD<span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(k,n)$</annotation>\\n </semantics></math>, and show that for Maker–Breaker, BIBD<span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>v</mi>\\n \\n <mo>,</mo>\\n \\n <mn>4</mn>\\n \\n <mo>,</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(v,4,1)$</annotation>\\n </semantics></math> is a first-player win if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>16</mn>\\n </mrow>\\n <annotation> $v\\\\ge 16$</annotation>\\n </semantics></math>. We show that TD<span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>4</mn>\\n \\n <mo>,</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(4,4)$</annotation>\\n </semantics></math> is a second-player win, and so the second player can force a draw in the regular game by playing the same strategy.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"33 2\",\"pages\":\"58-71\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21961\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21961\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21961","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在方块设计BIBD (v, k,λ) $(v,k,\lambda )$ 和横向设计TD (k, n) $(k,n)$ . 玩家轮流选择点数,第一个完成方块的玩家赢得游戏。我们证明了三重系统BIBD (v, 3, λ) $(v,3,\lambda )$ ,当且仅当v≥5时,第一个玩家获胜 $v\ge 5$ . 进一步,我们证明,对于k = 2,3 $k=2,3$ , TD (k, n) $(k,n)$ 第一个玩家获胜当且仅当n≥k $n\ge k$ . 我们还考虑了游戏的一个弱版本,称为Maker-Breaker,即如果第二个玩家能够阻止第一个玩家获胜,那么第二个玩家就会获胜。在这种情况下,我们采用已知的界限,当第一个或第二个玩家可以在BIBD (v, k,1) $(v,k,1)$ 和TD (k, n) $(k,n)$ ,并证明对于Maker-Breaker, BIBD (v, 4,1) $(v,4,1)$ 当且仅当v≥16时,第一玩家获胜吗 $v\ge 16$ . 我们证明了TD(4,4)$(4,4)$是第二参与人赢了,所以第二个玩家可以在常规游戏中使用相同的策略来逼平对手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tic-Tac-Toe on Designs

Tic-Tac-Toe on Designs

We consider playing the game of Tic-Tac-Toe on block designs BIBD ( v , k , λ ) $(v,k,\lambda )$ and transversal designs TD ( k , n ) $(k,n)$ . Players take turns choosing points and the first player to complete a block wins the game. We show that triple systems, BIBD ( v , 3 , λ ) $(v,3,\lambda )$ , are a first-player win if and only if v 5 $v\ge 5$ . Further, we show that for k = 2 , 3 $k=2,3$ , TD ( k , n ) $(k,n)$ is a first-player win if and only if n k $n\ge k$ . We also consider a weak version of the game, called Maker–Breaker, in which the second player wins if they can stop the first player from winning. In this case, we adapt known bounds for when either the first or second player can win on BIBD ( v , k , 1 ) $(v,k,1)$ and TD ( k , n ) $(k,n)$ , and show that for Maker–Breaker, BIBD ( v , 4 , 1 ) $(v,4,1)$ is a first-player win if and only if v 16 $v\ge 16$ . We show that TD ( 4 , 4 ) $(4,4)$ is a second-player win, and so the second player can force a draw in the regular game by playing the same strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信