Journal of Combinatorial Designs最新文献

筛选
英文 中文
New results on large sets of orthogonal arrays and orthogonal arrays 关于大型正交阵列集和正交阵列的新成果
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-05-07 DOI: 10.1002/jcd.21944
Guangzhou Chen, Xiaodong Niu, Jiufeng Shi
{"title":"New results on large sets of orthogonal arrays and orthogonal arrays","authors":"Guangzhou Chen,&nbsp;Xiaodong Niu,&nbsp;Jiufeng Shi","doi":"10.1002/jcd.21944","DOIUrl":"10.1002/jcd.21944","url":null,"abstract":"<p>Orthogonal array and a large set of orthogonal arrays are important research objects in combinatorial design theory, and they are widely applied to statistics, computer science, coding theory, and cryptography. In this paper, some new series of large sets of orthogonal arrays are given by direct construction, juxtaposition construction, Hadamard construction, finite field construction, and difference matrix construction. Subsequently, many new infinite classes of orthogonal arrays are obtained by using these large sets of orthogonal arrays and Kronecker product.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 8","pages":"488-515"},"PeriodicalIF":0.7,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Terwilliger algebras of the group association schemes of three metacyclic groups 三个元环群的群联方案的特尔维利格代数
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-04-25 DOI: 10.1002/jcd.21941
Jing Yang, Xiaoqian Zhang, Lihua Feng
{"title":"The Terwilliger algebras of the group association schemes of three metacyclic groups","authors":"Jing Yang,&nbsp;Xiaoqian Zhang,&nbsp;Lihua Feng","doi":"10.1002/jcd.21941","DOIUrl":"10.1002/jcd.21941","url":null,"abstract":"&lt;p&gt;For any finite group &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt;, the Terwilliger algebra &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; of the group association scheme satisfies the following inclusions: &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;⊆&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;⊆&lt;/mo&gt;\u0000 \u0000 &lt;mover&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;˜&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt;, where &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; is a specific vector space and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;˜&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; is the centralizer algebra of the permutation representation of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; induced by the action of conjugation. The group &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; is said to be triply transitive if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 8","pages":"438-463"},"PeriodicalIF":0.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140799847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On equitably 2-colourable odd cycle decompositions 关于等效 2 奇循环分解
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-04-18 DOI: 10.1002/jcd.21937
Andrea Burgess, Francesca Merola
{"title":"On equitably 2-colourable odd cycle decompositions","authors":"Andrea Burgess,&nbsp;Francesca Merola","doi":"10.1002/jcd.21937","DOIUrl":"10.1002/jcd.21937","url":null,"abstract":"&lt;p&gt;An &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt;-cycle decomposition of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; is said to be &lt;i&gt;equitably 2-colourable&lt;/i&gt; if there is a 2-vertex-colouring of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; such that each colour is represented (approximately) an equal number of times on each cycle: more precisely, we ask that in each cycle &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; of the decomposition, each colour appears on &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;⌊&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;∕&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;⌋&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; or &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;⌈&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;∕&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;⌉&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; of the vertices of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt;. In this paper we study the existence of equitably 2-colourable &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt;-cycle decompositions of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt;, where &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; is odd, and prove the existence of such a decomposition for &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;≡&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt; (mod &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 8","pages":"419-437"},"PeriodicalIF":0.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21937","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140630988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximal cocliques and the chromatic number of the Kneser graph on chambers of PG ( 3 , q ) $(3,q)$ PG(3,q)室上克奈瑟图的最大茧和色度数
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-04-15 DOI: 10.1002/jcd.21940
Philipp Heering, Klaus Metsch
{"title":"Maximal cocliques and the chromatic number of the Kneser graph on chambers of PG\u0000 \u0000 \u0000 \u0000 (\u0000 \u0000 3\u0000 ,\u0000 q\u0000 \u0000 )\u0000 \u0000 \u0000 $(3,q)$","authors":"Philipp Heering,&nbsp;Klaus Metsch","doi":"10.1002/jcd.21940","DOIUrl":"10.1002/jcd.21940","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Γ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${rm{Gamma }}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be the graph whose vertices are the chambers of the finite projective 3-space &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;PG&lt;/mtext&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $text{PG}(3,q)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, with two vertices being adjacent if and only if the corresponding chambers are in general position. We show that a maximal independent set of vertices of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Γ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${rm{Gamma }}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; contains &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${q}^{4}+3{q}^{3}+4{q}^{2}+3q+1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, or &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;5&lt;/mn&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $3{q}^{3}+5{q}^{2}+3q+1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, or at most &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 7","pages":"388-409"},"PeriodicalIF":0.7,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21940","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An explicit construction for large sets of infinite dimensional q $q$ -Steiner systems 无穷维 q-Steiner 系统大集合的显式构造
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-04-15 DOI: 10.1002/jcd.21942
Daniel R. Hawtin
{"title":"An explicit construction for large sets of infinite dimensional \u0000 \u0000 \u0000 q\u0000 \u0000 $q$\u0000 -Steiner systems","authors":"Daniel R. Hawtin","doi":"10.1002/jcd.21942","DOIUrl":"10.1002/jcd.21942","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $V$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be a vector space over the finite field &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${{mathbb{F}}}_{q}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. A &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $q$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-&lt;i&gt;Steiner system&lt;/i&gt;, or an &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 \u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $S{(t,k,V)}_{q}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, is a collection &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℬ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${rm{{mathcal B}}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-dimensional subspaces of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $V$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; such that every &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $t$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-dimensional subspace of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $V$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is contained in a unique element of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 \u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℬ&lt;/mi&gt;\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 8","pages":"413-418"},"PeriodicalIF":0.7,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genuinely nonabelian partial difference sets 真正非阿贝尔局部差集
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-03-30 DOI: 10.1002/jcd.21938
John Polhill, James A. Davis, Ken W. Smith, Eric Swartz
{"title":"Genuinely nonabelian partial difference sets","authors":"John Polhill,&nbsp;James A. Davis,&nbsp;Ken W. Smith,&nbsp;Eric Swartz","doi":"10.1002/jcd.21938","DOIUrl":"10.1002/jcd.21938","url":null,"abstract":"<p>Strongly regular graphs (SRGs) provide a fertile area of exploration in algebraic combinatorics, integrating techniques in graph theory, linear algebra, group theory, finite fields, finite geometry, and number theory. Of particular interest are those SRGs with a large automorphism group. If an automorphism group acts regularly (sharply transitively) on the vertices of the graph, then we may identify the graph with a subset of the group, a partial difference set (PDS), which allows us to apply techniques from group theory to examine the graph. Much of the work over the past four decades has concentrated on abelian PDSs using the powerful techniques of character theory. However, little work has been done on nonabelian PDSs. In this paper we point out the existence of <i>genuinely nonabelian</i> PDSs, that is, PDSs for parameter sets where a nonabelian group is the only possible regular automorphism group. We include methods for demonstrating that abelian PDSs are not possible for a particular set of parameters or for a particular SRG. Four infinite families of genuinely nonabelian PDSs are described, two of which—one arising from triangular graphs and one arising from Krein covers of complete graphs constructed by Godsil—are new. We also include a new nonabelian PDS found by computer search and present some possible future directions of research.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 7","pages":"351-370"},"PeriodicalIF":0.7,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21938","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Doubly sequenceable groups 双序列群
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-03-30 DOI: 10.1002/jcd.21939
Mohammad Javaheri
{"title":"Doubly sequenceable groups","authors":"Mohammad Javaheri","doi":"10.1002/jcd.21939","DOIUrl":"10.1002/jcd.21939","url":null,"abstract":"&lt;p&gt;Given a sequence &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;…&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${bf{g}}:{g}_{0},{rm{ldots }},{g}_{m}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; in a finite group &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; with &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 \u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${g}_{0}={1}_{G}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 \u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;…&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 \u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $bar{{bf{g}}}:{bar{g}}_{0},{rm{ldots }},{bar{g}}_{m}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be the sequence of consecutive quotients of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${bf{g}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; defined by &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mover&gt;\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 7","pages":"371-387"},"PeriodicalIF":0.7,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Group divisible designs with block size 4 and group sizes 4 and 7 组块大小为 4,组块大小为 4 和 7 的可分割设计
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-03-28 DOI: 10.1002/jcd.21932
R. Julian R. Abel, Thomas Britz, Yudhistira A. Bunjamin, Diana Combe
{"title":"Group divisible designs with block size 4 and group sizes 4 and 7","authors":"R. Julian R. Abel,&nbsp;Thomas Britz,&nbsp;Yudhistira A. Bunjamin,&nbsp;Diana Combe","doi":"10.1002/jcd.21932","DOIUrl":"https://doi.org/10.1002/jcd.21932","url":null,"abstract":"<p>In this paper, we consider the existence of group divisible designs (GDDs) with block size <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>4</mn>\u0000 </mrow>\u0000 <annotation> $4$</annotation>\u0000 </semantics></math> and group sizes <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>4</mn>\u0000 </mrow>\u0000 <annotation> $4$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>7</mn>\u0000 </mrow>\u0000 <annotation> $7$</annotation>\u0000 </semantics></math>. We show that there exists a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>4</mn>\u0000 </mrow>\u0000 <annotation> $4$</annotation>\u0000 </semantics></math>-GDD of type <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mn>4</mn>\u0000 <mi>t</mi>\u0000 </msup>\u0000 <msup>\u0000 <mn>7</mn>\u0000 <mi>s</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation> ${4}^{t}{7}^{s}$</annotation>\u0000 </semantics></math> for all but a finite specified set of feasible values for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mo>,</mo>\u0000 <mi>s</mi>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $(t,s)$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 6","pages":"328-346"},"PeriodicalIF":0.7,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21932","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140553167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alternating parity weak sequencing 交替奇偶校验弱排序
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-02-27 DOI: 10.1002/jcd.21936
Simone Costa, Stefano Della Fiore
{"title":"Alternating parity weak sequencing","authors":"Simone Costa,&nbsp;Stefano Della Fiore","doi":"10.1002/jcd.21936","DOIUrl":"10.1002/jcd.21936","url":null,"abstract":"&lt;p&gt;A subset &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $S$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of a group &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $(G,+)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $t$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-&lt;i&gt;weakly sequenceable&lt;/i&gt; if there is an ordering &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;y&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;…&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;y&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 \u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $({y}_{1},{rm{ldots }},{y}_{k})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of its elements such that the partial sums &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;…&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;msub&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${s}_{0},{s}_{1},{rm{ldots }},{s}_{k}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, given by &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${s}_{0}=0$&lt;/annotation&gt;\u0000 &lt;/","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 6","pages":"308-327"},"PeriodicalIF":0.7,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139978158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The existence of 2 3 ${2}^{3}$ -decomposable super-simple ( v , 4 , 6 ) $(v,4,6)$ -BIBDs 存在23个可分解的超简单(v,4,6)$(v,4,6)$-BIBDs
IF 0.7 4区 数学
Journal of Combinatorial Designs Pub Date : 2024-02-22 DOI: 10.1002/jcd.21935
Huangsheng Yu, Jingyuan Chen, R. Julian R. Abel, Dianhua Wu
{"title":"The existence of \u0000 \u0000 \u0000 \u0000 2\u0000 3\u0000 \u0000 \u0000 ${2}^{3}$\u0000 -decomposable super-simple \u0000 \u0000 \u0000 \u0000 (\u0000 \u0000 v\u0000 ,\u0000 4\u0000 ,\u0000 6\u0000 \u0000 )\u0000 \u0000 \u0000 $(v,4,6)$\u0000 -BIBDs","authors":"Huangsheng Yu,&nbsp;Jingyuan Chen,&nbsp;R. Julian R. Abel,&nbsp;Dianhua Wu","doi":"10.1002/jcd.21935","DOIUrl":"10.1002/jcd.21935","url":null,"abstract":"&lt;p&gt;A design is said to be &lt;i&gt;super-simple&lt;/i&gt; if the intersection of any two blocks has at most two elements. A design with index &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $tlambda $&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is said to be &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${lambda }^{t}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-&lt;i&gt;decomposable&lt;/i&gt;, if its blocks can be partitioned into nonempty collections &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${{rm{ {mathcal B} }}}_{i}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;≤&lt;/mo&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;mo&gt;≤&lt;/mo&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $1le ile t$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, such that each &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${{rm{ {mathcal B} }}}_{i}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; with the point set forms a design with index &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $lambda $&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. In this paper, it is proved that there exists a &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${2}^{3}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-decomposable super-simple &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;6&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $(v,4,6)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-BIBD (balanced incomplete block design) if and only if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 &lt;mo&gt;≥&lt;/mo&gt;\u0000","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 6","pages":"297-307"},"PeriodicalIF":0.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信