Every latin hypercube of order 5 has transversals

Pub Date : 2024-07-30 DOI:10.1002/jcd.21954
Alexey L. Perezhogin, Vladimir N. Potapov, Sergey Yu. Vladimirov
{"title":"Every latin hypercube of order 5 has transversals","authors":"Alexey L. Perezhogin,&nbsp;Vladimir N. Potapov,&nbsp;Sergey Yu. Vladimirov","doi":"10.1002/jcd.21954","DOIUrl":null,"url":null,"abstract":"<p>We prove that for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>&gt;</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $n\\gt 1$</annotation>\n </semantics></math> every latin <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-dimensional cube of order 5 has transversals. We find all 123 paratopy classes of layer-latin cubes of order 5 with no transversals. For each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $n\\ge 3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>q</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $q\\ge 3$</annotation>\n </semantics></math> we construct a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>2</mn>\n \n <mi>q</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>×</mo>\n \n <mi>q</mi>\n \n <mo>×</mo>\n \n <mi>⋯</mi>\n \n <mo>×</mo>\n \n <mi>q</mi>\n </mrow>\n </mrow>\n <annotation> $(2q-2)\\times q\\times {\\rm{\\cdots }}\\times q$</annotation>\n </semantics></math> latin <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-dimensional cuboid of order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>q</mi>\n </mrow>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math> with no transversals. Moreover, we find all paratopy classes of nonextendible and noncompletable latin cuboids of order 5.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that for all n > 1 $n\gt 1$ every latin n $n$ -dimensional cube of order 5 has transversals. We find all 123 paratopy classes of layer-latin cubes of order 5 with no transversals. For each n 3 $n\ge 3$ and q 3 $q\ge 3$ we construct a ( 2 q 2 ) × q × × q $(2q-2)\times q\times {\rm{\cdots }}\times q$ latin n $n$ -dimensional cuboid of order q $q$ with no transversals. Moreover, we find all paratopy classes of nonextendible and noncompletable latin cuboids of order 5.

分享
查看原文
每个 5 阶拉丁超立方体都有横轴
我们证明了所有阶为 5 的层拉丁立方体都有横轴。我们找到了所有 123 个无横轴的 5 阶拉丁层立方体的准类。对于每个且,我们都构造了一个无横轴的阶拉丁立方体。此外,我们还找到了所有阶为 5 的不可扩展和不可完成的拉丁立方体的准类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信