Symmetric 2- ( 36 , 15 , 6 ) $(36,15,6)$ designs with an automorphism of order two

IF 0.5 4区 数学 Q3 MATHEMATICS
Sanja Rukavina, Vladimir D. Tonchev
{"title":"Symmetric 2-\n \n \n \n \n (\n \n 36\n ,\n 15\n ,\n 6\n \n )\n \n \n \n $(36,15,6)$\n designs with an automorphism of order two","authors":"Sanja Rukavina,&nbsp;Vladimir D. Tonchev","doi":"10.1002/jcd.21952","DOIUrl":null,"url":null,"abstract":"<p>Bouyukliev, Fack and Winne classified all 2-<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>36</mn>\n \n <mo>,</mo>\n \n <mn>15</mn>\n \n <mo>,</mo>\n \n <mn>6</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $(36,15,6)$</annotation>\n </semantics></math> designs that admit an automorphism of odd prime order, and gave a partial classification of such designs that admit an automorphism of order 2. In this paper, we give the classification of all symmetric 2-<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>36</mn>\n \n <mo>,</mo>\n \n <mn>15</mn>\n \n <mo>,</mo>\n \n <mn>6</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $(36,15,6)$</annotation>\n </semantics></math> designs that admit an automorphism of order two. It is shown that there are exactly <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>547</mn>\n \n <mo>,</mo>\n \n <mn>701</mn>\n </mrow>\n </mrow>\n <annotation> $1,547,701$</annotation>\n </semantics></math> nonisomorphic such designs, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>135</mn>\n \n <mo>,</mo>\n \n <mn>779</mn>\n </mrow>\n </mrow>\n <annotation> $135,779$</annotation>\n </semantics></math> of which are self-dual designs. The ternary linear codes spanned by the incidence matrices of these designs are computed. Among these codes, there are near-extremal self-dual codes with previously unknown weight distributions.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 10","pages":"606-624"},"PeriodicalIF":0.5000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21952","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Bouyukliev, Fack and Winne classified all 2- ( 36 , 15 , 6 ) $(36,15,6)$ designs that admit an automorphism of odd prime order, and gave a partial classification of such designs that admit an automorphism of order 2. In this paper, we give the classification of all symmetric 2- ( 36 , 15 , 6 ) $(36,15,6)$ designs that admit an automorphism of order two. It is shown that there are exactly 1 , 547 , 701 $1,547,701$ nonisomorphic such designs, 135 , 779 $135,779$ of which are self-dual designs. The ternary linear codes spanned by the incidence matrices of these designs are computed. Among these codes, there are near-extremal self-dual codes with previously unknown weight distributions.

对称 2- ( 36 , 15 , 6 ) $(36,15,6)$设计的二阶自变量
布尤克利夫、法克和温恩对所有允许奇素数阶自形化的 2- ( 36 , 15 , 6 ) $(36,15,6)$ 设计进行了分类,并给出了允许 2 阶自形化的此类设计的部分分类。在本文中,我们给出了所有对称 2- ( 36 , 15 , 6 ) $(36,15,6)$ 图案的分类,这些图案都包含一个阶为 2 的自动形。结果表明,恰好有 1 , 547 , 701 $1,547,701$ 非同构的此类设计,其中 135 , 779 $135,779$ 是自双设计。我们计算了这些设计的入射矩阵所跨的三元线性编码。在这些代码中,有一些近乎极端的自偶代码,其权重分布是以前未知的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信