{"title":"Zarankiewicz numbers near the triple system threshold","authors":"Guangzhou Chen, Daniel Horsley, Adam Mammoliti","doi":"10.1002/jcd.21948","DOIUrl":null,"url":null,"abstract":"<p>For positive integers <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, the Zarankiewicz number <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Z</mi>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mn>2</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${Z}_{2,2}(m,n)$</annotation>\n </semantics></math> can be defined as the maximum total degree of a linear hypergraph with <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math> vertices and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> edges. Guy determined <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Z</mi>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mn>2</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${Z}_{2,2}(m,n)$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mfenced>\n <mfrac>\n <mi>m</mi>\n <mn>2</mn>\n </mfrac>\n </mfenced>\n <mo>∕</mo>\n <mn>3</mn>\n <mo>+</mo>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $n\\geqslant \\left(\\genfrac{}{}{0.0pt}{}{m}{2}\\right)\\unicode{x02215}3+O(m)$</annotation>\n </semantics></math>. Here, we extend this by determining <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Z</mi>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mn>2</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${Z}_{2,2}(m,n)$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mfenced>\n <mfrac>\n <mi>m</mi>\n <mn>2</mn>\n </mfrac>\n </mfenced>\n <mo>∕</mo>\n <mn>3</mn>\n </mrow>\n <annotation> $n\\geqslant \\left(\\genfrac{}{}{0.0pt}{}{m}{2}\\right)\\unicode{x02215}3$</annotation>\n </semantics></math> and, when <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math> is large, for all <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mfenced>\n <mfrac>\n <mi>m</mi>\n <mn>2</mn>\n </mfrac>\n </mfenced>\n <mo>∕</mo>\n <mn>6</mn>\n <mo>+</mo>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $n\\geqslant \\left(\\genfrac{}{}{0.0pt}{}{m}{2}\\right)\\unicode{x02215}6+O(m)$</annotation>\n </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 9","pages":"556-576"},"PeriodicalIF":0.5000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21948","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21948","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For positive integers and , the Zarankiewicz number can be defined as the maximum total degree of a linear hypergraph with vertices and edges. Guy determined for all . Here, we extend this by determining for all and, when is large, for all .
对于正整数 m $m$ 和 n $n$ ,Zarankiewicz 数 Z 2 , 2 ( m , n ) ${Z}_{2,2}(m,n)$ 可以定义为具有 m $m$ 顶点和 n $n$ 边的线性超图的最大总度。盖伊确定了 Z 2 , 2 ( m , n ) ${Z}_{2,2}(m,n)$ 适用于所有 n ⩾ m 2 ∕ 3 + O ( m ) $n\geqslant \left(\genfrac{}{}{0.0pt}{}{m}{2}\right)\unicode{x02215}3+O(m)$ 。在这里,我们通过确定 Z 2 , 2 ( m , n ) ${Z}_{2,2}(m,n)$ 适用于所有 n ⩾ m 2 ∕ 3 $n\geqslant \left(\genfrac{}{}{0.0pt}{}{m}{2}\right)\unicode{x02215}3$ 以及当 m $m$ 较大时,适用于所有 n ⩾ m 2 ∕ 6 + O ( m ) $n\geqslant \left(\genfrac{}{}{0.0pt}{}{m}{2}\right)\unicode{x02215}6+O(m)$ 来扩展这一点。
期刊介绍:
The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including:
block designs, t-designs, pairwise balanced designs and group divisible designs
Latin squares, quasigroups, and related algebras
computational methods in design theory
construction methods
applications in computer science, experimental design theory, and coding theory
graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics
finite geometry and its relation with design theory.
algebraic aspects of design theory.
Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.