多倍 1-完美代码

IF 0.5 4区 数学 Q3 MATHEMATICS
Denis S. Krotov
{"title":"多倍 1-完美代码","authors":"Denis S. Krotov","doi":"10.1002/jcd.21947","DOIUrl":null,"url":null,"abstract":"<p>A multifold 1-perfect code (1-perfect code for list decoding) in any graph is a set <span></span><math>\n \n <semantics>\n \n <mrow>\n \n <mi>C</mi>\n </mrow>\n \n <annotation>\n $C$\n</annotation>\n </semantics>\n </math> of vertices such that every vertex of the graph is at distance not more than 1 from exactly <span></span><math>\n \n <semantics>\n \n <mrow>\n \n <mi>μ</mi>\n </mrow>\n \n <annotation>\n $\\mu $\n</annotation>\n </semantics>\n </math> elements of <span></span><math>\n \n <semantics>\n \n <mrow>\n \n <mi>C</mi>\n </mrow>\n \n <annotation>\n $C$\n</annotation>\n </semantics>\n </math>. In <span></span><math>\n \n <semantics>\n \n <mrow>\n \n <mi>q</mi>\n </mrow>\n \n <annotation>\n $q$\n</annotation>\n </semantics>\n </math>-ary Hamming graphs, where <span></span><math>\n \n <semantics>\n \n <mrow>\n \n <mi>q</mi>\n </mrow>\n \n <annotation>\n $q$\n</annotation>\n </semantics>\n </math> is a prime power, we characterize all parameters of multifold 1-perfect codes and all parameters of additive multifold 1-perfect codes. In particular, we show that additive multifold 1-perfect codes are related to special multiset generalizations of spreads, multispreads, and that multispreads of parameters corresponding to multifold 1-perfect codes always exist.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 9","pages":"546-555"},"PeriodicalIF":0.5000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifold 1-perfect codes\",\"authors\":\"Denis S. Krotov\",\"doi\":\"10.1002/jcd.21947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A multifold 1-perfect code (1-perfect code for list decoding) in any graph is a set <span></span><math>\\n \\n <semantics>\\n \\n <mrow>\\n \\n <mi>C</mi>\\n </mrow>\\n \\n <annotation>\\n $C$\\n</annotation>\\n </semantics>\\n </math> of vertices such that every vertex of the graph is at distance not more than 1 from exactly <span></span><math>\\n \\n <semantics>\\n \\n <mrow>\\n \\n <mi>μ</mi>\\n </mrow>\\n \\n <annotation>\\n $\\\\mu $\\n</annotation>\\n </semantics>\\n </math> elements of <span></span><math>\\n \\n <semantics>\\n \\n <mrow>\\n \\n <mi>C</mi>\\n </mrow>\\n \\n <annotation>\\n $C$\\n</annotation>\\n </semantics>\\n </math>. In <span></span><math>\\n \\n <semantics>\\n \\n <mrow>\\n \\n <mi>q</mi>\\n </mrow>\\n \\n <annotation>\\n $q$\\n</annotation>\\n </semantics>\\n </math>-ary Hamming graphs, where <span></span><math>\\n \\n <semantics>\\n \\n <mrow>\\n \\n <mi>q</mi>\\n </mrow>\\n \\n <annotation>\\n $q$\\n</annotation>\\n </semantics>\\n </math> is a prime power, we characterize all parameters of multifold 1-perfect codes and all parameters of additive multifold 1-perfect codes. In particular, we show that additive multifold 1-perfect codes are related to special multiset generalizations of spreads, multispreads, and that multispreads of parameters corresponding to multifold 1-perfect codes always exist.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"32 9\",\"pages\":\"546-555\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21947\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21947","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

任何图中的多倍 1-完美码(用于列表解码的 1-完美码)都是这样一组顶点,即图中的每个顶点与......的元素之间的距离不超过 1。 在汉明图(其中为质幂)中,我们描述了多倍 1-完美码的所有参数以及加性多倍 1-完美码的所有参数。特别是,我们证明了加性多重 1-perfect 码与传播的特殊多集广义多线程相关,并且与多重 1-perfect 码相对应的参数多线程总是存在的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifold 1-perfect codes

A multifold 1-perfect code (1-perfect code for list decoding) in any graph is a set C $C$ of vertices such that every vertex of the graph is at distance not more than 1 from exactly μ $\mu $ elements of C $C$ . In q $q$ -ary Hamming graphs, where q $q$ is a prime power, we characterize all parameters of multifold 1-perfect codes and all parameters of additive multifold 1-perfect codes. In particular, we show that additive multifold 1-perfect codes are related to special multiset generalizations of spreads, multispreads, and that multispreads of parameters corresponding to multifold 1-perfect codes always exist.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信