Partitioning the projective plane into two incidence-rich parts

Pub Date : 2024-10-06 DOI:10.1002/jcd.21956
Zoltán Lóránt Nagy
{"title":"Partitioning the projective plane into two incidence-rich parts","authors":"Zoltán Lóránt Nagy","doi":"10.1002/jcd.21956","DOIUrl":null,"url":null,"abstract":"<p>An internal or friendly partition of a vertex set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $V(G)$</annotation>\n </semantics></math> of a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a partition to two nonempty sets <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>A</mi>\n \n <mo>∪</mo>\n \n <mi>B</mi>\n </mrow>\n </mrow>\n <annotation> $A\\cup B$</annotation>\n </semantics></math> such that every vertex has at least as many neighbours in its own class as in the other one. Motivated by Diwan's existence proof on internal partitions of graphs with high girth, we give constructive proofs for the existence of internal partitions in the incidence graph of projective planes and discuss its geometric properties. In addition, we determine exactly the maximum possible difference between the sizes of the neighbour set in its own class and the neighbour set of the other class that can be attained for all vertices at the same time for the incidence graphs of Desarguesian planes of square order.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21956","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An internal or friendly partition of a vertex set V ( G ) $V(G)$ of a graph G $G$ is a partition to two nonempty sets A B $A\cup B$ such that every vertex has at least as many neighbours in its own class as in the other one. Motivated by Diwan's existence proof on internal partitions of graphs with high girth, we give constructive proofs for the existence of internal partitions in the incidence graph of projective planes and discuss its geometric properties. In addition, we determine exactly the maximum possible difference between the sizes of the neighbour set in its own class and the neighbour set of the other class that can be attained for all vertices at the same time for the incidence graphs of Desarguesian planes of square order.

分享
查看原文
将投影面划分为两个入射丰富的部分
图 G $G$ 的顶点集 V ( G ) $V(G)$的内部或友好分区是对两个非空集 A ∪ B $A\cup B$ 的分区,使得每个顶点在自己的类中至少有和在另一个类中一样多的邻居。受 Diwan 关于高周长图内部分区存在性证明的启发,我们给出了投影平面入射图内部分区存在性的构造性证明,并讨论了其几何性质。此外,我们还精确地确定了对于平方阶的德萨格平面的入射图,所有顶点同时可以达到的本类邻集与他类邻集的最大可能差值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信