An Improvement on Triple Systems Without Two Types of Configurations

IF 0.5 4区 数学 Q3 MATHEMATICS
Liying Yu, Shuhui Yu, Lijun Ji
{"title":"An Improvement on Triple Systems Without Two Types of Configurations","authors":"Liying Yu,&nbsp;Shuhui Yu,&nbsp;Lijun Ji","doi":"10.1002/jcd.21962","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>There are four nonisomorphic configurations of triples that can form a triangle in a three-uniform hypergraph, where the configurations <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n </mrow>\n <annotation> ${\\bf{B}}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> ${\\bf{D}}$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>2</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n \n <mo>,</mo>\n \n <mn>4</mn>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>}</mo>\n </mrow>\n <annotation> $\\{1,2,3,4,5\\}$</annotation>\n </semantics></math> consist of three triples <span></span><math>\n <semantics>\n <mrow>\n <mn>125</mn>\n \n <mo>,</mo>\n \n <mn>134</mn>\n \n <mo>,</mo>\n \n <mn>234</mn>\n </mrow>\n <annotation> $125,134,234$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mn>123</mn>\n \n <mo>,</mo>\n \n <mn>134</mn>\n \n <mo>,</mo>\n \n <mn>235</mn>\n </mrow>\n <annotation> $123,134,235$</annotation>\n </semantics></math>, respectively. Denote by ex<span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>D</mi>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(n,{\\bf{D}})$</annotation>\n </semantics></math> and ex<span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>BD</mi>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(n,{\\bf{BD}})$</annotation>\n </semantics></math> the maximum number of triples in a three-uniform hypergraph on <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices which does not contain <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> ${\\bf{D}}$</annotation>\n </semantics></math>, both <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n </mrow>\n <annotation> ${\\bf{B}}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> ${\\bf{D}}$</annotation>\n </semantics></math>, respectively. Recently, Frankl et al. used theorem of Gustavsson on sufficiently dense graphs to determine ex<span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>D</mi>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(n,{\\bf{D}})$</annotation>\n </semantics></math> and ex<span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>BD</mi>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(n,{\\bf{BD}})$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <msub>\n <mi>n</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> $n\\ge {n}_{0}$</annotation>\n </semantics></math>. In this note, we use packings and group divisible designs of block size 4 to remove the condition <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <msub>\n <mi>n</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> $n\\ge {n}_{0}$</annotation>\n </semantics></math>.</p>\n </div>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 2","pages":"72-78"},"PeriodicalIF":0.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21962","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

There are four nonisomorphic configurations of triples that can form a triangle in a three-uniform hypergraph, where the configurations B ${\bf{B}}$ and D ${\bf{D}}$ on { 1 , 2 , 3 , 4 , 5 } $\{1,2,3,4,5\}$ consist of three triples 125 , 134 , 234 $125,134,234$ and 123 , 134 , 235 $123,134,235$ , respectively. Denote by ex ( n , D ) $(n,{\bf{D}})$ and ex ( n , BD ) $(n,{\bf{BD}})$ the maximum number of triples in a three-uniform hypergraph on n $n$ vertices which does not contain D ${\bf{D}}$ , both B ${\bf{B}}$ and D ${\bf{D}}$ , respectively. Recently, Frankl et al. used theorem of Gustavsson on sufficiently dense graphs to determine ex ( n , D ) $(n,{\bf{D}})$ and ex ( n , BD ) $(n,{\bf{BD}})$ for all n n 0 $n\ge {n}_{0}$ . In this note, we use packings and group divisible designs of block size 4 to remove the condition n n 0 $n\ge {n}_{0}$ .

无两种构型的三重系统的改进
在三均匀超图中有四种可以构成三角形的三元组的非同构构型,其中构型B ${\bf{B}}$和D ${\bf{D}}$在{1,$ $\{1,2,3,4,5\}$ $由三个三元组组成125,分别是134、234、125,134,234美元和123、134、235、123,134,235美元。用ex (n, D)$ (n,{\bf{D}})$和ex (n,D ${\bf{BD}})$ (n,{\bf{BD}})$在n$ n$顶点的三均匀超图中不包含D ${\bf{D}}$的最大三元组数,B ${\bf{B}}$和D ${\bf{D}}$。最近,Frankl等人利用Gustavsson定理在充分密集图上确定了ex (n, D)$ (n,{\bf{D}})$和ex (n,BD)$ (n,{\bf{BD}})$对于所有n≥n的0 $n\ge {n}_{0}$。在本文中,我们使用块大小为4的分组和组可分设计来消除n≥n 0 $n\ge {n}_{0}$的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信