下载PDF
{"title":"基于线性反馈移位寄存器序列的新型强度-3覆盖阵列","authors":"Kianoosh Shokri, Lucia Moura","doi":"10.1002/jcd.21963","DOIUrl":null,"url":null,"abstract":"<p>In an array over an alphabet of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> symbols, a <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math>-set of column indices <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mrow>\n <msub>\n <mi>c</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>c</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> is <i>covered</i> if each <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math>-tuple of the alphabet occurs at least once as a row of the sub-array indexed by <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>c</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>c</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. A <i>covering array</i>, denoted by CA<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>N</mi>\n \n <mo>;</mo>\n \n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>v</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, is an <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>N</mi>\n \n <mo>×</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> array over an alphabet with <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> symbols with the property that any <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math>-set of columns is covered. Here, <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>N</mi>\n </mrow>\n </mrow>\n </semantics></math> is the <i>size</i> and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math> is the <i>strength</i> of the covering array. Raaphorst et al. (Des. Codes Cryptogr. (2014) 73:949-968) give a construction for a CA<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>2</mn>\n \n <msup>\n <mi>q</mi>\n \n <mn>3</mn>\n </msup>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>;</mo>\n \n <mn>3</mn>\n \n <mo>,</mo>\n \n <msup>\n <mi>q</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>+</mo>\n \n <mi>q</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, which we denote as <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>R</mi>\n \n <mi>q</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, by using linear feedback shift register (LFSR) sequences with characteristic polynomial being a primitive polynomial over <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>q</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. The array <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>R</mi>\n \n <mi>q</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> corresponds to a covering perfect hash family. We give a construction of covering arrays of strength 3 based on horizontally concatenating <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>x</mi>\n </mrow>\n </mrow>\n </semantics></math> copies of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>R</mi>\n \n <mi>q</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, for any prime power <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>q</mi>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>x</mi>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mi>q</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <msup>\n <mi>q</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>,</mo>\n \n <msup>\n <mi>q</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>−</mo>\n \n <mi>q</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. The coverage is completed by developing Roux-type constructions that exploit the structure of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>R</mi>\n \n <mi>q</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> and remove repeated rows. Some of these covering arrays improve the previous best-known upper bound of the size <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>N</mi>\n </mrow>\n </mrow>\n </semantics></math> of covering arrays with the same corresponding parameters.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 4","pages":"156-171"},"PeriodicalIF":0.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21963","citationCount":"0","resultStr":"{\"title\":\"New Families of Strength-3 Covering Arrays Using Linear Feedback Shift Register Sequences\",\"authors\":\"Kianoosh Shokri, Lucia Moura\",\"doi\":\"10.1002/jcd.21963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In an array over an alphabet of <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> symbols, a <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-set of column indices <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <msub>\\n <mi>c</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>c</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> is <i>covered</i> if each <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-tuple of the alphabet occurs at least once as a row of the sub-array indexed by <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>c</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>c</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. A <i>covering array</i>, denoted by CA<span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>N</mi>\\n \\n <mo>;</mo>\\n \\n <mi>t</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>v</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, is an <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>N</mi>\\n \\n <mo>×</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> array over an alphabet with <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> symbols with the property that any <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-set of columns is covered. Here, <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is the <i>size</i> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is the <i>strength</i> of the covering array. Raaphorst et al. (Des. Codes Cryptogr. (2014) 73:949-968) give a construction for a CA<span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <msup>\\n <mi>q</mi>\\n \\n <mn>3</mn>\\n </msup>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n \\n <mo>;</mo>\\n \\n <mn>3</mn>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mi>q</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mi>q</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, which we denote as <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n \\n <mi>q</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>, by using linear feedback shift register (LFSR) sequences with characteristic polynomial being a primitive polynomial over <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mi>q</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. The array <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n \\n <mi>q</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> corresponds to a covering perfect hash family. We give a construction of covering arrays of strength 3 based on horizontally concatenating <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>x</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> copies of <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n \\n <mi>q</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>, for any prime power <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>x</mi>\\n \\n <mo>∈</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mi>q</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mi>q</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>−</mo>\\n \\n <mi>q</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. The coverage is completed by developing Roux-type constructions that exploit the structure of <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n \\n <mi>q</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> and remove repeated rows. Some of these covering arrays improve the previous best-known upper bound of the size <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> of covering arrays with the same corresponding parameters.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"33 4\",\"pages\":\"156-171\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21963\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21963\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21963","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用