基于线性反馈移位寄存器序列的新型强度-3覆盖阵列

IF 0.5 4区 数学 Q3 MATHEMATICS
Kianoosh Shokri, Lucia Moura
{"title":"基于线性反馈移位寄存器序列的新型强度-3覆盖阵列","authors":"Kianoosh Shokri,&nbsp;Lucia Moura","doi":"10.1002/jcd.21963","DOIUrl":null,"url":null,"abstract":"<p>In an array over an alphabet of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> symbols, a <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math>-set of column indices <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mrow>\n <msub>\n <mi>c</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>c</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> is <i>covered</i> if each <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math>-tuple of the alphabet occurs at least once as a row of the sub-array indexed by <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>c</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>c</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. A <i>covering array</i>, denoted by CA<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>N</mi>\n \n <mo>;</mo>\n \n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>v</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, is an <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>N</mi>\n \n <mo>×</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> array over an alphabet with <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> symbols with the property that any <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math>-set of columns is covered. Here, <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>N</mi>\n </mrow>\n </mrow>\n </semantics></math> is the <i>size</i> and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math> is the <i>strength</i> of the covering array. Raaphorst et al. (Des. Codes Cryptogr. (2014) 73:949-968) give a construction for a CA<span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>2</mn>\n \n <msup>\n <mi>q</mi>\n \n <mn>3</mn>\n </msup>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>;</mo>\n \n <mn>3</mn>\n \n <mo>,</mo>\n \n <msup>\n <mi>q</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>+</mo>\n \n <mi>q</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>q</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, which we denote as <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>R</mi>\n \n <mi>q</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, by using linear feedback shift register (LFSR) sequences with characteristic polynomial being a primitive polynomial over <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>q</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. The array <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>R</mi>\n \n <mi>q</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> corresponds to a covering perfect hash family. We give a construction of covering arrays of strength 3 based on horizontally concatenating <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>x</mi>\n </mrow>\n </mrow>\n </semantics></math> copies of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>R</mi>\n \n <mi>q</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, for any prime power <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>q</mi>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>x</mi>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mi>q</mi>\n \n <mo>,</mo>\n \n <mi>q</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <msup>\n <mi>q</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>,</mo>\n \n <msup>\n <mi>q</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>−</mo>\n \n <mi>q</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. The coverage is completed by developing Roux-type constructions that exploit the structure of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>R</mi>\n \n <mi>q</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> and remove repeated rows. Some of these covering arrays improve the previous best-known upper bound of the size <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>N</mi>\n </mrow>\n </mrow>\n </semantics></math> of covering arrays with the same corresponding parameters.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 4","pages":"156-171"},"PeriodicalIF":0.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21963","citationCount":"0","resultStr":"{\"title\":\"New Families of Strength-3 Covering Arrays Using Linear Feedback Shift Register Sequences\",\"authors\":\"Kianoosh Shokri,&nbsp;Lucia Moura\",\"doi\":\"10.1002/jcd.21963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In an array over an alphabet of <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> symbols, a <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-set of column indices <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <msub>\\n <mi>c</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>c</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> is <i>covered</i> if each <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-tuple of the alphabet occurs at least once as a row of the sub-array indexed by <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>c</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>c</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. A <i>covering array</i>, denoted by CA<span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>N</mi>\\n \\n <mo>;</mo>\\n \\n <mi>t</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>v</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, is an <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>N</mi>\\n \\n <mo>×</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> array over an alphabet with <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> symbols with the property that any <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-set of columns is covered. Here, <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is the <i>size</i> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is the <i>strength</i> of the covering array. Raaphorst et al. (Des. Codes Cryptogr. (2014) 73:949-968) give a construction for a CA<span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <msup>\\n <mi>q</mi>\\n \\n <mn>3</mn>\\n </msup>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n \\n <mo>;</mo>\\n \\n <mn>3</mn>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mi>q</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mi>q</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, which we denote as <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n \\n <mi>q</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>, by using linear feedback shift register (LFSR) sequences with characteristic polynomial being a primitive polynomial over <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mi>q</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. The array <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n \\n <mi>q</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> corresponds to a covering perfect hash family. We give a construction of covering arrays of strength 3 based on horizontally concatenating <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>x</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> copies of <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n \\n <mi>q</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>, for any prime power <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>x</mi>\\n \\n <mo>∈</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n \\n <mo>,</mo>\\n \\n <mi>q</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mi>q</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mi>q</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>−</mo>\\n \\n <mi>q</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. The coverage is completed by developing Roux-type constructions that exploit the structure of <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n \\n <mi>q</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> and remove repeated rows. Some of these covering arrays improve the previous best-known upper bound of the size <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> of covering arrays with the same corresponding parameters.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"33 4\",\"pages\":\"156-171\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21963\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21963\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21963","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在一个包含v个符号的字母表数组中,列索引{c1}的t集合,……C t}被覆盖,如果每个t-tuple的字母表至少出现一次,作为以c1为索引的子数组的一行,…,选C。一个覆盖阵列,表示为CA (N);T k v),是一个N × k的数组在一个有v个符号的字母表上,它的性质是anyT -列的集合被覆盖。这里,N是覆盖阵列的大小,t是覆盖阵列的强度。Raaphorst等人(Des. Codes Cryptogr.)。 (2014) 73:949-968)给出了CA (2 q 3−)的结构1 ;3 ,q2 + Q + 1,q)我们记作rq,利用特征多项式为fq上的原始多项式的线性反馈移位寄存器(LFSR)序列。数组rq对应于一个覆盖的完美哈希族。我们给出了一个基于水平连接rq的x个副本的覆盖强度为3的数组的构造,对于任意素数幂q和x∈{2, q, q + 1,问2:q2−Q + 1} .覆盖是通过开发roux型结构来完成的,这种结构利用了rq的结构并删除了重复的行。 这些覆盖数组中的一些改进了先前已知的具有相同相应参数的覆盖数组的大小N的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

New Families of Strength-3 Covering Arrays Using Linear Feedback Shift Register Sequences

New Families of Strength-3 Covering Arrays Using Linear Feedback Shift Register Sequences

In an array over an alphabet of v symbols, a t -set of column indices { c 1 , , c t } is covered if each t -tuple of the alphabet occurs at least once as a row of the sub-array indexed by c 1 , , c t . A covering array, denoted by CA ( N ; t , k , v ) , is an N × k array over an alphabet with v symbols with the property that any t -set of columns is covered. Here, N is the size and t is the strength of the covering array. Raaphorst et al. (Des. Codes Cryptogr. (2014) 73:949-968) give a construction for a CA ( 2 q 3 1 ; 3 , q 2 + q + 1 , q ) , which we denote as R q , by using linear feedback shift register (LFSR) sequences with characteristic polynomial being a primitive polynomial over F q . The array R q corresponds to a covering perfect hash family. We give a construction of covering arrays of strength 3 based on horizontally concatenating x copies of R q , for any prime power q and x { 2 , q , q + 1 , q 2 , q 2 q + 1 } . The coverage is completed by developing Roux-type constructions that exploit the structure of R q and remove repeated rows. Some of these covering arrays improve the previous best-known upper bound of the size N of covering arrays with the same corresponding parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信