下载PDF
{"title":"变周期长的有向Oberwolfach问题:一个递归构造","authors":"Suzan Kadri, Mateja Šajna","doi":"10.1002/jcd.21967","DOIUrl":null,"url":null,"abstract":"<p>The directed Oberwolfach problem <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> asks whether the complete symmetric digraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mi>n</mi>\n \n <mo>*</mo>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math>, assuming <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>+</mo>\n \n <mi>⋯</mi>\n \n <mo>+</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, admits a decomposition into spanning subdigraphs, each a disjoint union of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> directed cycles of lengths <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. We hereby describe a method for constructing a solution to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> given a solution to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>ℓ</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, for some <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo><</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>, if certain conditions on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> are satisfied. This approach enables us to extend a solution for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>ℓ</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> into a solution for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>ℓ</mi>\n </msub>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, as well as into a solution for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>ℓ</mi>\n </msub>\n \n <mo>,</mo>\n \n <msup>\n <mn>2</mn>\n \n <mrow>\n <mo>〈</mo>\n \n <mi>t</mi>\n \n <mo>〉</mo>\n </mrow>\n </msup>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mn>2</mn>\n \n <mrow>\n <mo>〈</mo>\n \n <mi>t</mi>\n \n <mo>〉</mo>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n </semantics></math> denotes <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math> copies of 2, provided <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math> is sufficiently large. In particular, our recursive construction allows us to effectively address the two-table directed Oberwolfach problem. We show that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> has a solution for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>2</mn>\n \n <mo>≤</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>≤</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, with a definite exception of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>=</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>=</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math> and a possible exception in the case that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>4</mn>\n \n <mo>,</mo>\n \n <mn>6</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> is even, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>+</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>≥</mo>\n \n <mn>14</mn>\n </mrow>\n </mrow>\n </semantics></math>. It has been shown previously that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> has a solution if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>+</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> is odd, and that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>m</mi>\n \n <mo>,</mo>\n \n <mi>m</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> has a solution if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n \n <mo>≠</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math>. In addition to solving many other cases of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>, we show that when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>2</mn>\n \n <mo>≤</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>+</mo>\n \n <mi>⋯</mi>\n \n <mo>+</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>≤</mo>\n \n <mn>13</mn>\n </mrow>\n </mrow>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> has a solution if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∉</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mn>4</mn>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mn>6</mn>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>3</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 7","pages":"239-260"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21967","citationCount":"0","resultStr":"{\"title\":\"The Directed Oberwolfach Problem With Variable Cycle Lengths: A Recursive Construction\",\"authors\":\"Suzan Kadri, Mateja Šajna\",\"doi\":\"10.1002/jcd.21967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The directed Oberwolfach problem <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> asks whether the complete symmetric digraph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>K</mi>\\n \\n <mi>n</mi>\\n \\n <mo>*</mo>\\n </msubsup>\\n </mrow>\\n </mrow>\\n </semantics></math>, assuming <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>=</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>+</mo>\\n \\n <mi>⋯</mi>\\n \\n <mo>+</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>, admits a decomposition into spanning subdigraphs, each a disjoint union of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> directed cycles of lengths <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. We hereby describe a method for constructing a solution to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> given a solution to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>ℓ</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, for some <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℓ</mi>\\n \\n <mo><</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, if certain conditions on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> are satisfied. This approach enables us to extend a solution for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>ℓ</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> into a solution for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>ℓ</mi>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>t</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, as well as into a solution for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>ℓ</mi>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mn>2</mn>\\n \\n <mrow>\\n <mo>〈</mo>\\n \\n <mi>t</mi>\\n \\n <mo>〉</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mn>2</mn>\\n \\n <mrow>\\n <mo>〈</mo>\\n \\n <mi>t</mi>\\n \\n <mo>〉</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math> denotes <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> copies of 2, provided <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is sufficiently large. In particular, our recursive construction allows us to effectively address the two-table directed Oberwolfach problem. We show that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> has a solution for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mo>≤</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>≤</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>, with a definite exception of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>=</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>=</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> and a possible exception in the case that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>∈</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>4</mn>\\n \\n <mo>,</mo>\\n \\n <mn>6</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> is even, and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>+</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>≥</mo>\\n \\n <mn>14</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>. It has been shown previously that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> has a solution if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>+</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> is odd, and that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>m</mi>\\n \\n <mo>,</mo>\\n \\n <mi>m</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> has a solution if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n \\n <mo>≠</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>. In addition to solving many other cases of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math>, we show that when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mo>≤</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>+</mo>\\n \\n <mi>⋯</mi>\\n \\n <mo>+</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mo>≤</mo>\\n \\n <mn>13</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> has a solution if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∉</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mn>4</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mn>6</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>3</mn>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"33 7\",\"pages\":\"239-260\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21967\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21967\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21967","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用