变周期长的有向Oberwolfach问题:一个递归构造

IF 0.5 4区 数学 Q3 MATHEMATICS
Suzan Kadri, Mateja Šajna
{"title":"变周期长的有向Oberwolfach问题:一个递归构造","authors":"Suzan Kadri,&nbsp;Mateja Šajna","doi":"10.1002/jcd.21967","DOIUrl":null,"url":null,"abstract":"<p>The directed Oberwolfach problem <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> asks whether the complete symmetric digraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msubsup>\n <mi>K</mi>\n \n <mi>n</mi>\n \n <mo>*</mo>\n </msubsup>\n </mrow>\n </mrow>\n </semantics></math>, assuming <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>+</mo>\n \n <mi>⋯</mi>\n \n <mo>+</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, admits a decomposition into spanning subdigraphs, each a disjoint union of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> directed cycles of lengths <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. We hereby describe a method for constructing a solution to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> given a solution to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>ℓ</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, for some <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mo>&lt;</mo>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>, if certain conditions on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> are satisfied. This approach enables us to extend a solution for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>ℓ</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> into a solution for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>ℓ</mi>\n </msub>\n \n <mo>,</mo>\n \n <mi>t</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, as well as into a solution for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>ℓ</mi>\n </msub>\n \n <mo>,</mo>\n \n <msup>\n <mn>2</mn>\n \n <mrow>\n <mo>〈</mo>\n \n <mi>t</mi>\n \n <mo>〉</mo>\n </mrow>\n </msup>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mn>2</mn>\n \n <mrow>\n <mo>〈</mo>\n \n <mi>t</mi>\n \n <mo>〉</mo>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n </semantics></math> denotes <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math> copies of 2, provided <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>t</mi>\n </mrow>\n </mrow>\n </semantics></math> is sufficiently large. In particular, our recursive construction allows us to effectively address the two-table directed Oberwolfach problem. We show that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> has a solution for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>2</mn>\n \n <mo>≤</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>≤</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, with a definite exception of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>=</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>=</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math> and a possible exception in the case that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>∈</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>4</mn>\n \n <mo>,</mo>\n \n <mn>6</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> is even, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>+</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>≥</mo>\n \n <mn>14</mn>\n </mrow>\n </mrow>\n </semantics></math>. It has been shown previously that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> has a solution if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>+</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> is odd, and that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>m</mi>\n \n <mo>,</mo>\n \n <mi>m</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> has a solution if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n \n <mo>≠</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math>. In addition to solving many other cases of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>, we show that when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>2</mn>\n \n <mo>≤</mo>\n \n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>+</mo>\n \n <mi>⋯</mi>\n \n <mo>+</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n \n <mo>≤</mo>\n \n <mn>13</mn>\n </mrow>\n </mrow>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mstyle>\n <mspace></mspace>\n \n <mtext>OP</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mo>*</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> has a solution if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>m</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>m</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∉</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mn>4</mn>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mn>6</mn>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>3</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 7","pages":"239-260"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21967","citationCount":"0","resultStr":"{\"title\":\"The Directed Oberwolfach Problem With Variable Cycle Lengths: A Recursive Construction\",\"authors\":\"Suzan Kadri,&nbsp;Mateja Šajna\",\"doi\":\"10.1002/jcd.21967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The directed Oberwolfach problem <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> asks whether the complete symmetric digraph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msubsup>\\n <mi>K</mi>\\n \\n <mi>n</mi>\\n \\n <mo>*</mo>\\n </msubsup>\\n </mrow>\\n </mrow>\\n </semantics></math>, assuming <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>=</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>+</mo>\\n \\n <mi>⋯</mi>\\n \\n <mo>+</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>, admits a decomposition into spanning subdigraphs, each a disjoint union of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> directed cycles of lengths <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. We hereby describe a method for constructing a solution to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> given a solution to <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>ℓ</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, for some <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ℓ</mi>\\n \\n <mo>&lt;</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, if certain conditions on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> are satisfied. This approach enables us to extend a solution for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>ℓ</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> into a solution for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>ℓ</mi>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>t</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, as well as into a solution for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>ℓ</mi>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mn>2</mn>\\n \\n <mrow>\\n <mo>〈</mo>\\n \\n <mi>t</mi>\\n \\n <mo>〉</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mn>2</mn>\\n \\n <mrow>\\n <mo>〈</mo>\\n \\n <mi>t</mi>\\n \\n <mo>〉</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math> denotes <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> copies of 2, provided <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is sufficiently large. In particular, our recursive construction allows us to effectively address the two-table directed Oberwolfach problem. We show that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> has a solution for all <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mo>≤</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>≤</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>, with a definite exception of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>=</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>=</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> and a possible exception in the case that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>∈</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>4</mn>\\n \\n <mo>,</mo>\\n \\n <mn>6</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> is even, and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>+</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>≥</mo>\\n \\n <mn>14</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>. It has been shown previously that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> has a solution if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>+</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> is odd, and that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>m</mi>\\n \\n <mo>,</mo>\\n \\n <mi>m</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> has a solution if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n \\n <mo>≠</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>. In addition to solving many other cases of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math>, we show that when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mo>≤</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>+</mo>\\n \\n <mi>⋯</mi>\\n \\n <mo>+</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msub>\\n \\n <mo>≤</mo>\\n \\n <mn>13</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>OP</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mo>*</mo>\\n </msup>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> has a solution if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>m</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∉</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mn>4</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mn>6</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>3</mn>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"33 7\",\"pages\":\"239-260\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21967\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21967\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21967","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

有向Oberwolfach问题OP * (m1,…k)问是否完全对称有向图K n *,假设n = m1 +⋯+k,允许分解成生成的子图,每个都是k个长度为m1的有向循环的不相交并,…,我…在此,我们描述了构造OP *()的解的方法。m1,…M (k)给出的解OP * (m 1 有向Oberwolfach问题OP * (m1,…k)问是否完全对称有向图K n *,假设n = m1 +⋯+k,允许分解成生成的子图,每个都是k个长度为m1的有向循环的不相交并,…,我… 在此,我们描述了构造OP *()的解的方法。m1,…M (k)给出的解OP * (m 1,……M (l),对于一些,l &lt;K,如果在m1上的某些条件,M k是满足的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Directed Oberwolfach Problem With Variable Cycle Lengths: A Recursive Construction

The directed Oberwolfach problem OP * ( m 1 , , m k ) asks whether the complete symmetric digraph K n * , assuming n = m 1 + + m k , admits a decomposition into spanning subdigraphs, each a disjoint union of k directed cycles of lengths m 1 , , m k . We hereby describe a method for constructing a solution to OP * ( m 1 , , m k ) given a solution to OP * ( m 1 , , m ) , for some < k , if certain conditions on m 1 , , m k are satisfied. This approach enables us to extend a solution for OP * ( m 1 , , m ) into a solution for OP * ( m 1 , , m , t ) , as well as into a solution for OP * ( m 1 , , m , 2 t ) , where 2 t denotes t copies of 2, provided t is sufficiently large. In particular, our recursive construction allows us to effectively address the two-table directed Oberwolfach problem. We show that OP * ( m 1 , m 2 ) has a solution for all 2 m 1 m 2 , with a definite exception of m 1 = m 2 = 3 and a possible exception in the case that m 1 { 4 , 6 } , m 2 is even, and m 1 + m 2 14 . It has been shown previously that OP * ( m 1 , m 2 ) has a solution if m 1 + m 2 is odd, and that OP * ( m , m ) has a solution if and only if m 3 . In addition to solving many other cases of OP * , we show that when 2 m 1 + + m k 13 , OP * ( m 1 , , m k ) has a solution if and only if ( m 1 , , m k ) { ( 4 ) , ( 6 ) , ( 3 , 3 ) } .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信