Alternating parity weak sequencing

IF 0.5 4区 数学 Q3 MATHEMATICS
Simone Costa, Stefano Della Fiore
{"title":"Alternating parity weak sequencing","authors":"Simone Costa,&nbsp;Stefano Della Fiore","doi":"10.1002/jcd.21936","DOIUrl":null,"url":null,"abstract":"<p>A subset <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n </mrow>\n <annotation> $S$</annotation>\n </semantics></math> of a group <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mo>+</mo>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(G,+)$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>-<i>weakly sequenceable</i> if there is an ordering <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <msub>\n <mi>y</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>y</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $({y}_{1},{\\rm{\\ldots }},{y}_{k})$</annotation>\n </semantics></math> of its elements such that the partial sums <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>s</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>s</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>s</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n <annotation> ${s}_{0},{s}_{1},{\\rm{\\ldots }},{s}_{k}$</annotation>\n </semantics></math>, given by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>s</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>=</mo>\n \n <mn>0</mn>\n </mrow>\n <annotation> ${s}_{0}=0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>s</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>=</mo>\n \n <msubsup>\n <mo>∑</mo>\n <mrow>\n <mi>j</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>i</mi>\n </msubsup>\n \n <msub>\n <mi>y</mi>\n \n <mi>j</mi>\n </msub>\n </mrow>\n <annotation> ${s}_{i}={\\sum }_{j=1}^{i}{y}_{j}$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n \n <mo>≤</mo>\n \n <mi>i</mi>\n \n <mo>≤</mo>\n \n <mi>k</mi>\n </mrow>\n <annotation> $1\\le i\\le k$</annotation>\n </semantics></math>, satisfy <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>s</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>≠</mo>\n \n <msub>\n <mi>s</mi>\n \n <mi>j</mi>\n </msub>\n </mrow>\n <annotation> ${s}_{i}\\ne {s}_{j}$</annotation>\n </semantics></math> whenever and <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n \n <mo>≤</mo>\n \n <mo>∣</mo>\n \n <mi>i</mi>\n \n <mo>−</mo>\n \n <mi>j</mi>\n \n <mo>∣</mo>\n \n <mo>≤</mo>\n \n <mi>t</mi>\n </mrow>\n <annotation> $1\\le | i-j| \\le t$</annotation>\n </semantics></math>. By Costa et al., it was proved that if the order of a group is <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n \n <mi>e</mi>\n </mrow>\n <annotation> $pe$</annotation>\n </semantics></math> then all sufficiently large subsets of the nonidentity elements are <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>-weakly sequenceable when <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n \n <mo>&gt;</mo>\n \n <mn>3</mn>\n </mrow>\n <annotation> $p\\gt 3$</annotation>\n </semantics></math> is prime, <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n \n <mo>≤</mo>\n \n <mn>3</mn>\n </mrow>\n <annotation> $e\\le 3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n \n <mo>≤</mo>\n \n <mn>6</mn>\n </mrow>\n <annotation> $t\\le 6$</annotation>\n </semantics></math>. Inspired by this result, we show that, if <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is the semidirect product of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Z</mi>\n \n <mi>p</mi>\n </msub>\n </mrow>\n <annotation> ${{\\mathbb{Z}}}_{p}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Z</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${{\\mathbb{Z}}}_{2}$</annotation>\n </semantics></math> and the subset <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n </mrow>\n <annotation> $S$</annotation>\n </semantics></math> is balanced, then <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n </mrow>\n <annotation> $S$</annotation>\n </semantics></math> admits, regardless of its size, an <i>alternating parity</i> <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>-weak sequencing whenever <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n \n <mo>&gt;</mo>\n \n <mn>3</mn>\n </mrow>\n <annotation> $p\\gt 3$</annotation>\n </semantics></math> is prime and <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n \n <mo>≤</mo>\n \n <mn>8</mn>\n </mrow>\n <annotation> $t\\le 8$</annotation>\n </semantics></math>. A subset of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is balanced if it contains the same number of even elements and odd elements and an alternating parity ordering alternates even and odd elements. Then using a hybrid approach that combines both Ramsey theory and the probabilistic method we also prove, for groups <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> that are semidirect products of a generic (nonnecessarily abelian) group <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n </mrow>\n <annotation> $N$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Z</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${{\\mathbb{Z}}}_{2}$</annotation>\n </semantics></math>, that all sufficiently large balanced subsets of the nonidentity elements admit an alternating parity <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>-weak sequencing. The same procedure works also for studying the weak sequenceability for generic sufficiently large (not necessarily balanced) sets. Here we have been able to prove that, if the size of a subset <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n </mrow>\n <annotation> $S$</annotation>\n </semantics></math> of a group <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is large enough and if <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n </mrow>\n <annotation> $S$</annotation>\n </semantics></math> does not contain 0, then <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n </mrow>\n <annotation> $S$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>-weakly sequenceable.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 6","pages":"308-327"},"PeriodicalIF":0.5000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21936","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A subset S $S$ of a group ( G , + ) $(G,+)$ is t $t$ -weakly sequenceable if there is an ordering ( y 1 , , y k ) $({y}_{1},{\rm{\ldots }},{y}_{k})$ of its elements such that the partial sums s 0 , s 1 , , s k ${s}_{0},{s}_{1},{\rm{\ldots }},{s}_{k}$ , given by s 0 = 0 ${s}_{0}=0$ and s i = j = 1 i y j ${s}_{i}={\sum }_{j=1}^{i}{y}_{j}$ for 1 i k $1\le i\le k$ , satisfy s i s j ${s}_{i}\ne {s}_{j}$ whenever and 1 i j t $1\le | i-j| \le t$ . By Costa et al., it was proved that if the order of a group is p e $pe$ then all sufficiently large subsets of the nonidentity elements are t $t$ -weakly sequenceable when p > 3 $p\gt 3$ is prime, e 3 $e\le 3$ and t 6 $t\le 6$ . Inspired by this result, we show that, if G $G$ is the semidirect product of Z p ${{\mathbb{Z}}}_{p}$ and Z 2 ${{\mathbb{Z}}}_{2}$ and the subset S $S$ is balanced, then S $S$ admits, regardless of its size, an alternating parity t $t$ -weak sequencing whenever p > 3 $p\gt 3$ is prime and t 8 $t\le 8$ . A subset of G $G$ is balanced if it contains the same number of even elements and odd elements and an alternating parity ordering alternates even and odd elements. Then using a hybrid approach that combines both Ramsey theory and the probabilistic method we also prove, for groups G $G$ that are semidirect products of a generic (nonnecessarily abelian) group N $N$ and Z 2 ${{\mathbb{Z}}}_{2}$ , that all sufficiently large balanced subsets of the nonidentity elements admit an alternating parity t $t$ -weak sequencing. The same procedure works also for studying the weak sequenceability for generic sufficiently large (not necessarily balanced) sets. Here we have been able to prove that, if the size of a subset S $S$ of a group G $G$ is large enough and if S $S$ does not contain 0, then S $S$ is t $t$ -weakly sequenceable.

交替奇偶校验弱排序
群 (G,+)$(G,+)$ 的子集 S$S$ 是 t$t$ 弱可排序的,条件是其元素的排序 (y1,...,yk)$({y}_{1},{\rm{\ldots }},{y}_{k})$ 使得部分和 s0,s1,...,sk${s}_{0},{s}_{1},{\rm{\ldots }},{s}_{k}$, 给定 s0=0${s}_{0}=0$ 和 si=∑j=1iyj${s}_{i}={\sum }_{j=1}^{i}{y}_{j}$ for 1≤i≤k$1\le i\le k$、满足 si≠sj${s}_{i}\ne {s}_{j}$ 时,且 1≤∣i-j∣≤t$1\le | i-j| \le t$。Costa 等人证明,如果一个群的阶为 pe$pe$,那么当 p>3$p\gt 3$ 是素数,e≤3$e\le 3$ 和 t≤6$t\le 6$ 时,所有足够大的非相同元素子集都是 t$t$ 弱可排序的。受这一结果的启发,我们证明,如果 G$G$ 是 Zp${{\mathbb{Z}}}_{p}$ 和 Z2${{\mathbb{Z}}}_{2}$ 的半间接积,且子集 S$S$ 是平衡的,那么 S$S$ 无论大小,只要 p>3$p\gt 3$ 是素数,且 t≤8$t\le 8$,就允许交替奇偶性 t$t$ 弱序列。如果 G$G$ 的一个子集包含相同数量的偶数元素和奇数元素,并且交替奇偶排序交替使用偶数元素和奇数元素,那么这个子集就是平衡的。然后,我们使用一种结合了拉姆齐理论和概率方法的混合方法,也证明了对于一般(非必要是非良性)群 N$N$ 和 Z2${{\mathbb{Z}}}_{2}$ 的半直接乘积的群 G$G$,所有足够大的非相同元素平衡子集都接受交替奇偶性 t$t$ 弱排序。同样的程序也适用于研究一般的足够大(不一定平衡)集合的弱可排序性。在这里,我们已经能够证明,如果一个群 G$G$ 的子集 S$S$ 的大小足够大,并且如果 S$S$ 不包含 0,那么 S$S$ 是 t$t$ 弱可排序的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信