{"title":"The Terwilliger algebras of the group association schemes of three metacyclic groups","authors":"Jing Yang, Xiaoqian Zhang, Lihua Feng","doi":"10.1002/jcd.21941","DOIUrl":null,"url":null,"abstract":"<p>For any finite group <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>, the Terwilliger algebra <span></span><math>\n \n <mrow>\n <mi>T</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> of the group association scheme satisfies the following inclusions: <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mn>0</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⊆</mo>\n \n <mi>T</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⊆</mo>\n \n <mover>\n <mi>T</mi>\n \n <mo>˜</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>, where <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mn>0</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is a specific vector space and <span></span><math>\n \n <mrow>\n <mover>\n <mi>T</mi>\n \n <mo>˜</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is the centralizer algebra of the permutation representation of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> induced by the action of conjugation. The group <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is said to be triply transitive if <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mn>0</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mover>\n <mi>T</mi>\n \n <mo>˜</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>. In this paper, we determine the dimensions of <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mn>0</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <mover>\n <mi>T</mi>\n \n <mo>˜</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> for <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> being <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n \n <mo>=</mo>\n \n <mrow>\n <mo>〈</mo>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <mi>b</mi>\n \n <mo>∣</mo>\n \n <msup>\n <mi>a</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n </msup>\n \n <mo>=</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <msup>\n <mi>a</mi>\n \n <mi>n</mi>\n </msup>\n \n <mo>=</mo>\n \n <msup>\n <mi>b</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>,</mo>\n \n <mi>b</mi>\n \n <mi>a</mi>\n \n <msup>\n <mi>b</mi>\n \n <mrow>\n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </msup>\n \n <mo>=</mo>\n \n <msup>\n <mi>a</mi>\n \n <mi>k</mi>\n </msup>\n </mrow>\n \n <mo>〉</mo>\n </mrow>\n </mrow></math>, <span></span><math>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>⋊</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>p</mi>\n </msub>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>p</mi>\n </msub>\n \n <mo>⋊</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>n</mi>\n </msub>\n </mrow></math>, and show that <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>⋊</mo>\n \n <msub>\n <mi>C</mi>\n \n <mn>2</mn>\n </msub>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mn>3</mn>\n </msub>\n \n <mo>⋊</mo>\n \n <msub>\n <mi>C</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n </msub>\n </mrow></math> are triply transitive. Additionally, we give a complete characterization of the Wedderburn components of the Terwilliger algebras of <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n </mrow></math>, <span></span><math>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>⋊</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>p</mi>\n </msub>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>p</mi>\n </msub>\n \n <mo>⋊</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>n</mi>\n </msub>\n </mrow></math> when they are triply transitive.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 8","pages":"438-463"},"PeriodicalIF":0.5000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21941","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For any finite group , the Terwilliger algebra of the group association scheme satisfies the following inclusions: , where is a specific vector space and is the centralizer algebra of the permutation representation of induced by the action of conjugation. The group is said to be triply transitive if . In this paper, we determine the dimensions of and for being , and , and show that and are triply transitive. Additionally, we give a complete characterization of the Wedderburn components of the Terwilliger algebras of , and when they are triply transitive.
期刊介绍:
The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including:
block designs, t-designs, pairwise balanced designs and group divisible designs
Latin squares, quasigroups, and related algebras
computational methods in design theory
construction methods
applications in computer science, experimental design theory, and coding theory
graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics
finite geometry and its relation with design theory.
algebraic aspects of design theory.
Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.