The Terwilliger algebras of the group association schemes of three metacyclic groups

IF 0.5 4区 数学 Q3 MATHEMATICS
Jing Yang, Xiaoqian Zhang, Lihua Feng
{"title":"The Terwilliger algebras of the group association schemes of three metacyclic groups","authors":"Jing Yang,&nbsp;Xiaoqian Zhang,&nbsp;Lihua Feng","doi":"10.1002/jcd.21941","DOIUrl":null,"url":null,"abstract":"<p>For any finite group <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>, the Terwilliger algebra <span></span><math>\n \n <mrow>\n <mi>T</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> of the group association scheme satisfies the following inclusions: <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mn>0</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⊆</mo>\n \n <mi>T</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⊆</mo>\n \n <mover>\n <mi>T</mi>\n \n <mo>˜</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>, where <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mn>0</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is a specific vector space and <span></span><math>\n \n <mrow>\n <mover>\n <mi>T</mi>\n \n <mo>˜</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is the centralizer algebra of the permutation representation of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> induced by the action of conjugation. The group <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is said to be triply transitive if <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mn>0</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mover>\n <mi>T</mi>\n \n <mo>˜</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>. In this paper, we determine the dimensions of <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mn>0</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <mover>\n <mi>T</mi>\n \n <mo>˜</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> for <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> being <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n \n <mo>=</mo>\n \n <mrow>\n <mo>〈</mo>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <mi>b</mi>\n \n <mo>∣</mo>\n \n <msup>\n <mi>a</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n </msup>\n \n <mo>=</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <msup>\n <mi>a</mi>\n \n <mi>n</mi>\n </msup>\n \n <mo>=</mo>\n \n <msup>\n <mi>b</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>,</mo>\n \n <mi>b</mi>\n \n <mi>a</mi>\n \n <msup>\n <mi>b</mi>\n \n <mrow>\n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </msup>\n \n <mo>=</mo>\n \n <msup>\n <mi>a</mi>\n \n <mi>k</mi>\n </msup>\n </mrow>\n \n <mo>〉</mo>\n </mrow>\n </mrow></math>, <span></span><math>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>⋊</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>p</mi>\n </msub>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>p</mi>\n </msub>\n \n <mo>⋊</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>n</mi>\n </msub>\n </mrow></math>, and show that <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>⋊</mo>\n \n <msub>\n <mi>C</mi>\n \n <mn>2</mn>\n </msub>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mn>3</mn>\n </msub>\n \n <mo>⋊</mo>\n \n <msub>\n <mi>C</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n </msub>\n </mrow></math> are triply transitive. Additionally, we give a complete characterization of the Wedderburn components of the Terwilliger algebras of <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n </mrow></math>, <span></span><math>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>⋊</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>p</mi>\n </msub>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>p</mi>\n </msub>\n \n <mo>⋊</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>n</mi>\n </msub>\n </mrow></math> when they are triply transitive.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 8","pages":"438-463"},"PeriodicalIF":0.5000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21941","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For any finite group G , the Terwilliger algebra T ( G ) of the group association scheme satisfies the following inclusions: T 0 ( G ) T ( G ) T ˜ ( G ) , where T 0 ( G ) is a specific vector space and T ˜ ( G ) is the centralizer algebra of the permutation representation of G induced by the action of conjugation. The group G is said to be triply transitive if T 0 ( G ) = T ˜ ( G ) . In this paper, we determine the dimensions of T 0 ( G ) and T ˜ ( G ) for G being T n , k = a , b a 2 n = 1 , a n = b 2 , b a b 1 = a k , C n C p and C p C n , and show that T n , k , C n C 2 and C 3 C 2 n are triply transitive. Additionally, we give a complete characterization of the Wedderburn components of the Terwilliger algebras of T n , k , C n C p and C p C n when they are triply transitive.

三个元环群的群联方案的特尔维利格代数
对于任何有限群,群关联方案的特尔维利格代数满足以下结论:其中 , 是一个特定的向量空间, 是共轭作用诱导的 的置换表示的中心化代数。如果 .在本文中,我们确定了 、 和 的维数,并证明 和 是三传递的。此外,我们还给出了 、 和 的特威里格布尔的韦德伯恩成分的完整特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信