{"title":"Incidence-free sets and edge domination in incidence graphs","authors":"Sam Spiro, Sam Adriaensen, Sam Mattheus","doi":"10.1002/jcd.21925","DOIUrl":"10.1002/jcd.21925","url":null,"abstract":"<p>A set of edges <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Γ</mi>\u0000 </mrow>\u0000 <annotation> ${rm{Gamma }}$</annotation>\u0000 </semantics></math> of a graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is an edge dominating set if every edge of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> intersects at least one edge of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Γ</mi>\u0000 </mrow>\u0000 <annotation> ${rm{Gamma }}$</annotation>\u0000 </semantics></math>, and the edge domination number <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>γ</mi>\u0000 \u0000 <mi>e</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${gamma }_{e}(G)$</annotation>\u0000 </semantics></math> is the smallest size of an edge dominating set. Expanding on work of Laskar and Wallis, we study <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>γ</mi>\u0000 \u0000 <mi>e</mi>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mi>G</mi>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${gamma }_{e}(G)$</annotation>\u0000 </semantics></math> for graphs <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> which are the incidence graph of some incidence structure <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 <annotation> $D$</annotation>\u0000 </semantics></math>, with an emphasis on the case when <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 <annotation> $D$</annotation>\u0000 </semantics></math> is a symmetric design. In particular, we show in this latter case that determining <math>\u0000 ","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 2","pages":"55-87"},"PeriodicalIF":0.7,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21925","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On symmetric designs with flag-transitive and point-quasiprimitive automorphism groups","authors":"Zhilin Zhang, Jianfu Chen, Shenglin Zhou","doi":"10.1002/jcd.21924","DOIUrl":"10.1002/jcd.21924","url":null,"abstract":"<p>Let <math>\u0000 \u0000 <mrow>\u0000 <mi>D</mi>\u0000 \u0000 <mo>=</mo>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>P</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>ℬ</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow></math> be a nontrivial symmetric <math>\u0000 \u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mrow>\u0000 <mi>v</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>k</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>λ</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow></math>-design with <math>\u0000 \u0000 <mrow>\u0000 <mi>λ</mi>\u0000 \u0000 <mo>≤</mo>\u0000 \u0000 <mn>100</mn>\u0000 </mrow></math>, and let <math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> be a flag-transitive automorphism group of <math>\u0000 \u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow></math>. In this paper, we show that if <math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> is quasiprimitive on <math>\u0000 \u0000 <mrow>\u0000 <mi>P</mi>\u0000 </mrow></math>, then <math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> is of holomorph affine or almost simple type. Moreover, if <math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> is imprimitive on <math>\u0000 \u0000 <mrow>\u0000 <mi>P</mi>\u0000 </mrow></math>, then <math>\u0000 \u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow></math> is of almost simple type. According to this observation and to the classification of the finite simple groups we determine all such symmetric designs and the corresponding automorphism groups. We conclude with two open problems and a conjecture.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 3","pages":"107-126"},"PeriodicalIF":0.7,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135726222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Completing the solution of the directed Oberwolfach problem with cycles of equal length","authors":"Alice Lacaze-Masmonteil","doi":"10.1002/jcd.21918","DOIUrl":"https://doi.org/10.1002/jcd.21918","url":null,"abstract":"<p>In this paper, we give a solution to the last outstanding case of the directed Oberwolfach problem with tables of uniform length. Namely, we address the two-table case with tables of equal odd length. We prove that the complete symmetric digraph on <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $2m$</annotation>\u0000 </semantics></math> vertices, denoted <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>K</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <mo>*</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation> ${K}_{2m}^{* }$</annotation>\u0000 </semantics></math>, admits a resolvable decomposition into directed cycles of odd length <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $m$</annotation>\u0000 </semantics></math>. This completely settles the directed Oberwolfach problem with tables of uniform length.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 1","pages":"5-30"},"PeriodicalIF":0.7,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21918","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134880386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Orthogonal cycle systems with cycle length less than 10","authors":"Selda Küçükçifçi, Emine Şule Yazıcı","doi":"10.1002/jcd.21921","DOIUrl":"https://doi.org/10.1002/jcd.21921","url":null,"abstract":"<p>An <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math>-decomposition of a graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is a partition of the edge set of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> into subsets, where each subset induces a copy of the graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math>. A <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-orthogonal <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math>-decomposition of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is a set of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math>-decompositions of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> such that any two copies of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math> in distinct <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math>-decompositions intersect in at most one edge. When <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 <mo>=</mo>\u0000 <msub>\u0000 <mi>K</mi>\u0000 <mi>v</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> $G={K}_{v}$</annotation>\u0000 </semantics></math>, we call the <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math>-decompositi","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 1","pages":"31-45"},"PeriodicalIF":0.7,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134814340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction of rank 4 self-dual association schemes inducing three partial geometric designs","authors":"Akihide Hanaki","doi":"10.1002/jcd.21917","DOIUrl":"https://doi.org/10.1002/jcd.21917","url":null,"abstract":"<p>Xu characterized rank 4 self-dual association schemes inducing three partial geometric designs by their character tables. We construct such association schemes as Schur rings over Abelian 2-groups.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 12","pages":"691-700"},"PeriodicalIF":0.7,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50122308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"proper partial geometries with an automorphism group acting primitively on points and lines","authors":"Wendi Di","doi":"10.1002/jcd.21914","DOIUrl":"https://doi.org/10.1002/jcd.21914","url":null,"abstract":"<p>Let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{S}}$</annotation>\u0000 </semantics></math> be a finite proper partial geometry pg<math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>t</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>α</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $(s,t,alpha )$</annotation>\u0000 </semantics></math> not isomorphic to the van Lint–Schrijver partial geometry pg<math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mn>5</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>5</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $(5,5,2)$</annotation>\u0000 </semantics></math> and let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> be a group of automorphisms of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{S}}$</annotation>\u0000 </semantics></math> acting primitively on both points and lines of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{S}}$</annotation>\u0000 </semantics></math>, we show that if <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>α</mi>\u0000 \u0000 <mo>≤</mo>\u0000 \u0000 <mn>60</mn>\u0000 </mrow>\u0000 <annotation> $alpha le 60$</annotation>\u0000 </semantics></math> then <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> must be almost simple.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 11","pages":"642-664"},"PeriodicalIF":0.7,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50148812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}