{"title":"Completing the solution of the directed Oberwolfach problem with cycles of equal length","authors":"Alice Lacaze-Masmonteil","doi":"10.1002/jcd.21918","DOIUrl":"https://doi.org/10.1002/jcd.21918","url":null,"abstract":"<p>In this paper, we give a solution to the last outstanding case of the directed Oberwolfach problem with tables of uniform length. Namely, we address the two-table case with tables of equal odd length. We prove that the complete symmetric digraph on <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $2m$</annotation>\u0000 </semantics></math> vertices, denoted <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>K</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <mo>*</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation> ${K}_{2m}^{* }$</annotation>\u0000 </semantics></math>, admits a resolvable decomposition into directed cycles of odd length <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation> $m$</annotation>\u0000 </semantics></math>. This completely settles the directed Oberwolfach problem with tables of uniform length.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 1","pages":"5-30"},"PeriodicalIF":0.7,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21918","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134880386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Orthogonal cycle systems with cycle length less than 10","authors":"Selda Küçükçifçi, Emine Şule Yazıcı","doi":"10.1002/jcd.21921","DOIUrl":"https://doi.org/10.1002/jcd.21921","url":null,"abstract":"<p>An <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math>-decomposition of a graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is a partition of the edge set of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> into subsets, where each subset induces a copy of the graph <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math>. A <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math>-orthogonal <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math>-decomposition of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> is a set of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation> $k$</annotation>\u0000 </semantics></math><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math>-decompositions of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> such that any two copies of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math> in distinct <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math>-decompositions intersect in at most one edge. When <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 <mo>=</mo>\u0000 <msub>\u0000 <mi>K</mi>\u0000 <mi>v</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> $G={K}_{v}$</annotation>\u0000 </semantics></math>, we call the <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation> $H$</annotation>\u0000 </semantics></math>-decompositi","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 1","pages":"31-45"},"PeriodicalIF":0.7,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134814340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction of rank 4 self-dual association schemes inducing three partial geometric designs","authors":"Akihide Hanaki","doi":"10.1002/jcd.21917","DOIUrl":"https://doi.org/10.1002/jcd.21917","url":null,"abstract":"<p>Xu characterized rank 4 self-dual association schemes inducing three partial geometric designs by their character tables. We construct such association schemes as Schur rings over Abelian 2-groups.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 12","pages":"691-700"},"PeriodicalIF":0.7,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50122308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"proper partial geometries with an automorphism group acting primitively on points and lines","authors":"Wendi Di","doi":"10.1002/jcd.21914","DOIUrl":"https://doi.org/10.1002/jcd.21914","url":null,"abstract":"<p>Let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{S}}$</annotation>\u0000 </semantics></math> be a finite proper partial geometry pg<math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>t</mi>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mi>α</mi>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $(s,t,alpha )$</annotation>\u0000 </semantics></math> not isomorphic to the van Lint–Schrijver partial geometry pg<math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mn>5</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>5</mn>\u0000 \u0000 <mo>,</mo>\u0000 \u0000 <mn>2</mn>\u0000 </mrow>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $(5,5,2)$</annotation>\u0000 </semantics></math> and let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> be a group of automorphisms of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{S}}$</annotation>\u0000 </semantics></math> acting primitively on both points and lines of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 <annotation> ${mathscr{S}}$</annotation>\u0000 </semantics></math>, we show that if <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>α</mi>\u0000 \u0000 <mo>≤</mo>\u0000 \u0000 <mn>60</mn>\u0000 </mrow>\u0000 <annotation> $alpha le 60$</annotation>\u0000 </semantics></math> then <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation> $G$</annotation>\u0000 </semantics></math> must be almost simple.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 11","pages":"642-664"},"PeriodicalIF":0.7,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50148812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A generalization of group divisible \u0000 \u0000 \u0000 t\u0000 \u0000 $t$\u0000 -designs","authors":"Sijia Liu, Yue Han, Lijun Ma, Lidong Wang, Zihong Tian","doi":"10.1002/jcd.21912","DOIUrl":"https://doi.org/10.1002/jcd.21912","url":null,"abstract":"<p>Cameron defined the concept of generalized <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $t$</annotation>\u0000 </semantics></math>-designs, which generalized <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $t$</annotation>\u0000 </semantics></math>-designs, resolvable designs and orthogonal arrays. This paper introduces a new class of combinatorial designs which simultaneously provide a generalization of both generalized <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $t$</annotation>\u0000 </semantics></math>-designs and group divisible <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $t$</annotation>\u0000 </semantics></math>-designs. In certain cases, we derive necessary conditions for the existence of generalized group divisible <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $t$</annotation>\u0000 </semantics></math>-designs, and then point out close connections with various well-known classes of designs, including mixed orthogonal arrays, factorizations of the complete multipartite graphs, large sets of group divisible designs, and group divisible designs with (orthogonal) resolvability. Moreover, we investigate constructions for generalized group divisible <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 <annotation> $t$</annotation>\u0000 </semantics></math>-designs and almost completely determine their existence for <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mo>=</mo>\u0000 <mn>2</mn>\u0000 <mo>,</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation> $t=2,3$</annotation>\u0000 </semantics></math> and small block sizes.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 11","pages":"575-603"},"PeriodicalIF":0.7,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50137077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}