Dual incidences and t-designs in vector spaces

IF 0.5 4区 数学 Q3 MATHEMATICS
Kristijan Tabak
{"title":"Dual incidences and t-designs in vector spaces","authors":"Kristijan Tabak","doi":"10.1002/jcd.21922","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> be an <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-dimensional vector space over <math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> ${{\\mathbb{F}}}_{q}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal H} }}$</annotation>\n </semantics></math> is any set of <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-dimensional subspaces of <math>\n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math>. We construct two incidence structures <math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n \n <mrow>\n <mi>m</mi>\n \n <mi>a</mi>\n \n <mi>x</mi>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{D}}}_{max}({\\rm{ {\\mathcal H} }})$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n \n <mrow>\n <mi>m</mi>\n \n <mi>i</mi>\n \n <mi>n</mi>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{D}}}_{min}({\\rm{ {\\mathcal H} }})$</annotation>\n </semantics></math> using subspaces from <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal H} }}$</annotation>\n </semantics></math>. The points are subspaces from <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal H} }}$</annotation>\n </semantics></math>. The blocks of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n \n <mrow>\n <mi>m</mi>\n \n <mi>a</mi>\n \n <mi>x</mi>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{D}}}_{max}({\\rm{ {\\mathcal H} }})$</annotation>\n </semantics></math> are indexed by all hyperplanes of <math>\n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math>, while the blocks of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n \n <mrow>\n <mi>m</mi>\n \n <mi>i</mi>\n \n <mi>n</mi>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{D}}}_{min}({\\rm{ {\\mathcal H} }})$</annotation>\n </semantics></math> are indexed by all subspaces of dimension 1. We show that <math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n \n <mrow>\n <mi>m</mi>\n \n <mi>a</mi>\n \n <mi>x</mi>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{D}}}_{max}({\\rm{ {\\mathcal H} }})$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n \n <mrow>\n <mi>m</mi>\n \n <mi>i</mi>\n \n <mi>n</mi>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{D}}}_{min}({\\rm{ {\\mathcal H} }})$</annotation>\n </semantics></math> are dual in the sense that their incidence matrices are dependent, one can be calculated from the other. Additionally, if <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal H} }}$</annotation>\n </semantics></math> is a <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n \n <mo>−</mo>\n \n <msub>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>λ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> $t-{(n,k,\\lambda )}_{q}$</annotation>\n </semantics></math>-design we prove new matrix equations for incidence matrices of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n \n <mrow>\n <mi>m</mi>\n \n <mi>a</mi>\n \n <mi>x</mi>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{D}}}_{max}({\\rm{ {\\mathcal H} }})$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n \n <mrow>\n <mi>m</mi>\n \n <mi>i</mi>\n \n <mi>n</mi>\n </mrow>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{D}}}_{min}({\\rm{ {\\mathcal H} }})$</annotation>\n </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 1","pages":"46-52"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21922","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let V $V$ be an n $n$ -dimensional vector space over F q ${{\mathbb{F}}}_{q}$ and H ${\rm{ {\mathcal H} }}$ is any set of k $k$ -dimensional subspaces of V $V$ . We construct two incidence structures D m a x ( H ) ${{\mathscr{D}}}_{max}({\rm{ {\mathcal H} }})$ and D m i n ( H ) ${{\mathscr{D}}}_{min}({\rm{ {\mathcal H} }})$ using subspaces from H ${\rm{ {\mathcal H} }}$ . The points are subspaces from H ${\rm{ {\mathcal H} }}$ . The blocks of D m a x ( H ) ${{\mathscr{D}}}_{max}({\rm{ {\mathcal H} }})$ are indexed by all hyperplanes of V $V$ , while the blocks of D m i n ( H ) ${{\mathscr{D}}}_{min}({\rm{ {\mathcal H} }})$ are indexed by all subspaces of dimension 1. We show that D m a x ( H ) ${{\mathscr{D}}}_{max}({\rm{ {\mathcal H} }})$ and D m i n ( H ) ${{\mathscr{D}}}_{min}({\rm{ {\mathcal H} }})$ are dual in the sense that their incidence matrices are dependent, one can be calculated from the other. Additionally, if H ${\rm{ {\mathcal H} }}$ is a t ( n , k , λ ) q $t-{(n,k,\lambda )}_{q}$ -design we prove new matrix equations for incidence matrices of D m a x ( H ) ${{\mathscr{D}}}_{max}({\rm{ {\mathcal H} }})$ and D m i n ( H ) ${{\mathscr{D}}}_{min}({\rm{ {\mathcal H} }})$ .

向量空间中的对偶关联和t-设计
设V$ V$是F $ q ${{\mathbb{F}}}_{q}$和H上的n$ n维向量空间${\rm{{\mathcal H}}}$是V$ V$的k$ k$维子空间的任意集合。我们构造了两个关联结构D m a x (H)${{\mathscr{D}}}_{max}({\rm{{\mathcal H}}})$和D m i n (H)${{\mathscr{D}}}_{min}({\rm{\mathcal H}}})$使用H ${\rm{{\mathcal H}}}} $的子空间。这些点是H ${\rm{{\mathcal H}}}$的子空间。dmma x (H)的块${{\mathscr{D}}}_{max}({\rm{{\mathcal H}}})$由V$ V$的所有超平面索引,而dm块i n (H)${{\mathscr{D}}}_{min}({\rm{{\mathcal H}}})$由维度为1的所有子空间索引。我们证明了dmma x (H)${{\mathscr{D}}}_{max}({\rm{{\mathcal H}}})$和D m i n (H)${{\mathscr{D}}}_{min}({\rm{{\mathcal H}}})$是对偶的,因为它们的关联矩阵是相关的,一个可以从另一个计算出来。 另外,如果H ${\rm{{\mathcal H}}}$是t−(n),k ,λ) q $t-{(n,k,\ λ)}_{q}$ -设计证明了D m关联矩阵的新矩阵方程ax (H)$ {{\mathscr{D}}}_{max}({\rm{\mathcal H}}})$和Dmin (H)$ {{\mathscr{D}}}_{min}({\rm{{\mathcal H}}})$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信