几何对偶码与和秩最小码

IF 0.5 4区 数学 Q3 MATHEMATICS
Martino Borello, Ferdinando Zullo
{"title":"几何对偶码与和秩最小码","authors":"Martino Borello,&nbsp;Ferdinando Zullo","doi":"10.1002/jcd.21934","DOIUrl":null,"url":null,"abstract":"<p>The main purpose of this paper is to further study the structure, parameters and constructions of the recently introduced minimal codes in the sum-rank metric. These objects form a bridge between the classical minimal codes in the Hamming metric, the subject of intense research over the past three decades partly because of their cryptographic properties, and the more recent rank-metric minimal codes. We prove some bounds on their parameters, existence results, and, via a tool that we name geometric dual, we manage to construct minimal codes with few weights. A generalization of the celebrated Ashikhmin–Barg condition is proved and used to ensure the minimality of certain constructions.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 5","pages":"238-273"},"PeriodicalIF":0.5000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric dual and sum-rank minimal codes\",\"authors\":\"Martino Borello,&nbsp;Ferdinando Zullo\",\"doi\":\"10.1002/jcd.21934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The main purpose of this paper is to further study the structure, parameters and constructions of the recently introduced minimal codes in the sum-rank metric. These objects form a bridge between the classical minimal codes in the Hamming metric, the subject of intense research over the past three decades partly because of their cryptographic properties, and the more recent rank-metric minimal codes. We prove some bounds on their parameters, existence results, and, via a tool that we name geometric dual, we manage to construct minimal codes with few weights. A generalization of the celebrated Ashikhmin–Barg condition is proved and used to ensure the minimality of certain constructions.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"32 5\",\"pages\":\"238-273\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21934\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21934","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是进一步研究最近引入的和秩度量最小码的结构、参数和构造。这些对象构成了汉明度量中经典极小码与最新秩度量极小码之间的桥梁,汉明度量极小码在过去三十年中一直是人们热衷研究的对象,部分原因是其密码学特性。我们证明了它们的一些参数界限和存在性结果,并通过一种我们命名为几何对偶的工具,设法构造了权重很少的极小码。我们证明了著名的 Ashikhmin-Barg 条件的一般化,并用它来确保某些构造的最小性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric dual and sum-rank minimal codes

The main purpose of this paper is to further study the structure, parameters and constructions of the recently introduced minimal codes in the sum-rank metric. These objects form a bridge between the classical minimal codes in the Hamming metric, the subject of intense research over the past three decades partly because of their cryptographic properties, and the more recent rank-metric minimal codes. We prove some bounds on their parameters, existence results, and, via a tool that we name geometric dual, we manage to construct minimal codes with few weights. A generalization of the celebrated Ashikhmin–Barg condition is proved and used to ensure the minimality of certain constructions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信