将有序三元组划分为均匀有序的洞穴设计

IF 0.5 4区 数学 Q3 MATHEMATICS
Yuli Tan, Junling Zhou
{"title":"将有序三元组划分为均匀有序的洞穴设计","authors":"Yuli Tan,&nbsp;Junling Zhou","doi":"10.1002/jcd.21933","DOIUrl":null,"url":null,"abstract":"<p>A large set <math>\n <semantics>\n <mrow>\n <mtext>LOD</mtext>\n <mrow>\n <mo>(</mo>\n <mi>v</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{LOD}(v)$</annotation>\n </semantics></math> is a partition of all ordered triples of a <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math>-set into <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $v-2$</annotation>\n </semantics></math> disjoint ordered designs of order <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math>. In this paper, we generalize the large set <math>\n <semantics>\n <mrow>\n <mtext>LOD</mtext>\n <mrow>\n <mo>(</mo>\n <mi>v</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{LOD}(v)$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n <mo>=</mo>\n <mi>g</mi>\n <mi>t</mi>\n </mrow>\n <annotation> $v=gt$</annotation>\n </semantics></math> to the notion of <math>\n <semantics>\n <mrow>\n <mtext>POT</mtext>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>t</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{POT}({g}^{t})$</annotation>\n </semantics></math>, representing a partition of all ordered triples of a <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mi>t</mi>\n </mrow>\n <annotation> $gt$</annotation>\n </semantics></math>-set into disjoint uniform holely ordered designs <math>\n <semantics>\n <mrow>\n <mtext>HOD</mtext>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>t</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{HOD}({g}^{t})$</annotation>\n </semantics></math>s. We show that a <math>\n <semantics>\n <mrow>\n <mtext>POT</mtext>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>t</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{POT}({g}^{t})$</annotation>\n </semantics></math> exists if and only if <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $g=1,2$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation> $t\\ge 3$</annotation>\n </semantics></math>, except for <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mn>6</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(g,t)=(1,6)$</annotation>\n </semantics></math>. Moreover, we study the existence of a <math>\n <semantics>\n <mrow>\n <mtext>POT</mtext>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>t</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{POT}({g}^{t})$</annotation>\n </semantics></math> with every member <math>\n <semantics>\n <mrow>\n <mtext>HOD</mtext>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>t</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{HOD}({g}^{t})$</annotation>\n </semantics></math> having a kind of resolution. We show that a resolvable <math>\n <semantics>\n <mrow>\n <mtext>POT</mtext>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>g</mi>\n <mi>t</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{POT}({g}^{t})$</annotation>\n </semantics></math> exists if and only if <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $g=1,2$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation> $t\\ge 3$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>≠</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mn>6</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(g,t)\\ne (1,6)$</annotation>\n </semantics></math>, with 27 possible exceptions. For almost resolvable <math>\n <semantics>\n <mrow>\n <mtext>POT</mtext>\n <mrow>\n <mo>(</mo>\n <msup>\n <mn>2</mn>\n <mi>t</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{POT}({2}^{t})$</annotation>\n </semantics></math>s, we prove the asymptotic existence and present a few infinite families.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 5","pages":"274-293"},"PeriodicalIF":0.5000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partition of ordered triples into uniform holey ordered designs\",\"authors\":\"Yuli Tan,&nbsp;Junling Zhou\",\"doi\":\"10.1002/jcd.21933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A large set <math>\\n <semantics>\\n <mrow>\\n <mtext>LOD</mtext>\\n <mrow>\\n <mo>(</mo>\\n <mi>v</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{LOD}(v)$</annotation>\\n </semantics></math> is a partition of all ordered triples of a <math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n <annotation> $v$</annotation>\\n </semantics></math>-set into <math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> $v-2$</annotation>\\n </semantics></math> disjoint ordered designs of order <math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n <annotation> $v$</annotation>\\n </semantics></math>. In this paper, we generalize the large set <math>\\n <semantics>\\n <mrow>\\n <mtext>LOD</mtext>\\n <mrow>\\n <mo>(</mo>\\n <mi>v</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{LOD}(v)$</annotation>\\n </semantics></math> with <math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n <mo>=</mo>\\n <mi>g</mi>\\n <mi>t</mi>\\n </mrow>\\n <annotation> $v=gt$</annotation>\\n </semantics></math> to the notion of <math>\\n <semantics>\\n <mrow>\\n <mtext>POT</mtext>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>g</mi>\\n <mi>t</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{POT}({g}^{t})$</annotation>\\n </semantics></math>, representing a partition of all ordered triples of a <math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n <mi>t</mi>\\n </mrow>\\n <annotation> $gt$</annotation>\\n </semantics></math>-set into disjoint uniform holely ordered designs <math>\\n <semantics>\\n <mrow>\\n <mtext>HOD</mtext>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>g</mi>\\n <mi>t</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{HOD}({g}^{t})$</annotation>\\n </semantics></math>s. We show that a <math>\\n <semantics>\\n <mrow>\\n <mtext>POT</mtext>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>g</mi>\\n <mi>t</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{POT}({g}^{t})$</annotation>\\n </semantics></math> exists if and only if <math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> $g=1,2$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>≥</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation> $t\\\\ge 3$</annotation>\\n </semantics></math>, except for <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>6</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(g,t)=(1,6)$</annotation>\\n </semantics></math>. Moreover, we study the existence of a <math>\\n <semantics>\\n <mrow>\\n <mtext>POT</mtext>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>g</mi>\\n <mi>t</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{POT}({g}^{t})$</annotation>\\n </semantics></math> with every member <math>\\n <semantics>\\n <mrow>\\n <mtext>HOD</mtext>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>g</mi>\\n <mi>t</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{HOD}({g}^{t})$</annotation>\\n </semantics></math> having a kind of resolution. We show that a resolvable <math>\\n <semantics>\\n <mrow>\\n <mtext>POT</mtext>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>g</mi>\\n <mi>t</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{POT}({g}^{t})$</annotation>\\n </semantics></math> exists if and only if <math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> $g=1,2$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>≥</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation> $t\\\\ge 3$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>≠</mo>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>6</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(g,t)\\\\ne (1,6)$</annotation>\\n </semantics></math>, with 27 possible exceptions. For almost resolvable <math>\\n <semantics>\\n <mrow>\\n <mtext>POT</mtext>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>t</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{POT}({2}^{t})$</annotation>\\n </semantics></math>s, we prove the asymptotic existence and present a few infinite families.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"32 5\",\"pages\":\"274-293\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21933\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21933","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

大集合是将一个集合的所有有序三元组划分为秩为 的互不相邻的有序设计。在本文中,我们将大集合的概念概括为 ,表示把一个集合的所有有序三元组分割成互不相交的均匀有序设计 s。此外,我们还研究了每个成员都有一种解析的 a 的存在性。我们证明,当且仅当 、 、 、 时,可解析的 a 存在,但有 27 个可能的例外。对于几乎可解的 s,我们证明了其渐近存在性,并提出了一些无穷族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partition of ordered triples into uniform holey ordered designs

A large set LOD ( v ) $\text{LOD}(v)$ is a partition of all ordered triples of a v $v$ -set into v 2 $v-2$ disjoint ordered designs of order v $v$ . In this paper, we generalize the large set LOD ( v ) $\text{LOD}(v)$ with v = g t $v=gt$ to the notion of POT ( g t ) $\text{POT}({g}^{t})$ , representing a partition of all ordered triples of a g t $gt$ -set into disjoint uniform holely ordered designs HOD ( g t ) $\text{HOD}({g}^{t})$ s. We show that a POT ( g t ) $\text{POT}({g}^{t})$ exists if and only if g = 1 , 2 $g=1,2$ and t 3 $t\ge 3$ , except for ( g , t ) = ( 1 , 6 ) $(g,t)=(1,6)$ . Moreover, we study the existence of a POT ( g t ) $\text{POT}({g}^{t})$ with every member HOD ( g t ) $\text{HOD}({g}^{t})$ having a kind of resolution. We show that a resolvable POT ( g t ) $\text{POT}({g}^{t})$ exists if and only if g = 1 , 2 $g=1,2$ , t 3 $t\ge 3$ , ( g , t ) ( 1 , 6 ) $(g,t)\ne (1,6)$ , with 27 possible exceptions. For almost resolvable POT ( 2 t ) $\text{POT}({2}^{t})$ s, we prove the asymptotic existence and present a few infinite families.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信