关联图中的无关联集和边支配

IF 0.5 4区 数学 Q3 MATHEMATICS
Sam Spiro, Sam Adriaensen, Sam Mattheus
{"title":"关联图中的无关联集和边支配","authors":"Sam Spiro,&nbsp;Sam Adriaensen,&nbsp;Sam Mattheus","doi":"10.1002/jcd.21925","DOIUrl":null,"url":null,"abstract":"<p>A set of edges <math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation> ${\\rm{\\Gamma }}$</annotation>\n </semantics></math> of a graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is an edge dominating set if every edge of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> intersects at least one edge of <math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation> ${\\rm{\\Gamma }}$</annotation>\n </semantics></math>, and the edge domination number <math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>e</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\gamma }_{e}(G)$</annotation>\n </semantics></math> is the smallest size of an edge dominating set. Expanding on work of Laskar and Wallis, we study <math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>e</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\gamma }_{e}(G)$</annotation>\n </semantics></math> for graphs <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> which are the incidence graph of some incidence structure <math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math>, with an emphasis on the case when <math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> is a symmetric design. In particular, we show in this latter case that determining <math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>e</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\gamma }_{e}(G)$</annotation>\n </semantics></math> is equivalent to determining the largest size of certain incidence-free sets of <math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math>. Throughout, we employ a variety of combinatorial, probabilistic and geometric techniques, supplemented with tools from spectral graph theory.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 2","pages":"55-87"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21925","citationCount":"0","resultStr":"{\"title\":\"Incidence-free sets and edge domination in incidence graphs\",\"authors\":\"Sam Spiro,&nbsp;Sam Adriaensen,&nbsp;Sam Mattheus\",\"doi\":\"10.1002/jcd.21925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A set of edges <math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Gamma }}$</annotation>\\n </semantics></math> of a graph <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is an edge dominating set if every edge of <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> intersects at least one edge of <math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Gamma }}$</annotation>\\n </semantics></math>, and the edge domination number <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>γ</mi>\\n \\n <mi>e</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\gamma }_{e}(G)$</annotation>\\n </semantics></math> is the smallest size of an edge dominating set. Expanding on work of Laskar and Wallis, we study <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>γ</mi>\\n \\n <mi>e</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\gamma }_{e}(G)$</annotation>\\n </semantics></math> for graphs <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> which are the incidence graph of some incidence structure <math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <annotation> $D$</annotation>\\n </semantics></math>, with an emphasis on the case when <math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <annotation> $D$</annotation>\\n </semantics></math> is a symmetric design. In particular, we show in this latter case that determining <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>γ</mi>\\n \\n <mi>e</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\gamma }_{e}(G)$</annotation>\\n </semantics></math> is equivalent to determining the largest size of certain incidence-free sets of <math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <annotation> $D$</annotation>\\n </semantics></math>. Throughout, we employ a variety of combinatorial, probabilistic and geometric techniques, supplemented with tools from spectral graph theory.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"32 2\",\"pages\":\"55-87\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21925\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21925\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21925","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图G $G$的一组边Γ ${\rm{\Gamma }}$是边支配集,如果G $G$的每条边都与Γ ${\rm{\Gamma }}$的至少一条边相交,并且边支配数Γ e(G) ${\gamma }_{e}(G)$是边支配集的最小值。在Laskar和Wallis工作的基础上,我们研究了某些关联结构D $D$的关联图G $G$的γe(G) ${\gamma }_{e}(G)$,重点研究了D $D$是对称设计的情况。特别地,我们在后一种情况下表明,确定γe(G) ${\gamma }_{e}(G)$等同于确定某些无入射集D $D$的最大大小。在整个过程中,我们使用了各种组合、概率和几何技术,并辅以谱图理论的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incidence-free sets and edge domination in incidence graphs

A set of edges Γ ${\rm{\Gamma }}$ of a graph G $G$ is an edge dominating set if every edge of G $G$ intersects at least one edge of Γ ${\rm{\Gamma }}$ , and the edge domination number γ e ( G ) ${\gamma }_{e}(G)$ is the smallest size of an edge dominating set. Expanding on work of Laskar and Wallis, we study γ e ( G ) ${\gamma }_{e}(G)$ for graphs G $G$ which are the incidence graph of some incidence structure D $D$ , with an emphasis on the case when D $D$ is a symmetric design. In particular, we show in this latter case that determining γ e ( G ) ${\gamma }_{e}(G)$ is equivalent to determining the largest size of certain incidence-free sets of D $D$ . Throughout, we employ a variety of combinatorial, probabilistic and geometric techniques, supplemented with tools from spectral graph theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信