Doubly sequenceable groups

IF 0.5 4区 数学 Q3 MATHEMATICS
Mohammad Javaheri
{"title":"Doubly sequenceable groups","authors":"Mohammad Javaheri","doi":"10.1002/jcd.21939","DOIUrl":null,"url":null,"abstract":"<p>Given a sequence <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n \n <mo>:</mo>\n \n <msub>\n <mi>g</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>g</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n <annotation> ${\\bf{g}}:{g}_{0},{\\rm{\\ldots }},{g}_{m}$</annotation>\n </semantics></math> in a finite group <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>g</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>=</mo>\n \n <msub>\n <mn>1</mn>\n \n <mi>G</mi>\n </msub>\n </mrow>\n <annotation> ${g}_{0}={1}_{G}$</annotation>\n </semantics></math>, let <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>g</mi>\n \n <mo>¯</mo>\n </mover>\n \n <mo>:</mo>\n \n <msub>\n <mover>\n <mi>g</mi>\n \n <mo>¯</mo>\n </mover>\n \n <mn>0</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mover>\n <mi>g</mi>\n \n <mo>¯</mo>\n </mover>\n \n <mi>m</mi>\n </msub>\n </mrow>\n <annotation> $\\bar{{\\bf{g}}}:{\\bar{g}}_{0},{\\rm{\\ldots }},{\\bar{g}}_{m}$</annotation>\n </semantics></math> be the sequence of consecutive quotients of <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n </mrow>\n <annotation> ${\\bf{g}}$</annotation>\n </semantics></math> defined by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>g</mi>\n \n <mo>¯</mo>\n </mover>\n \n <mn>0</mn>\n </msub>\n \n <mo>=</mo>\n \n <msub>\n <mn>1</mn>\n \n <mi>G</mi>\n </msub>\n </mrow>\n <annotation> ${\\bar{g}}_{0}={1}_{G}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>g</mi>\n \n <mo>¯</mo>\n </mover>\n \n <mi>i</mi>\n </msub>\n \n <mo>=</mo>\n \n <msubsup>\n <mi>g</mi>\n <mrow>\n <mi>i</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n <mrow>\n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </msubsup>\n \n <msub>\n <mi>g</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${\\bar{g}}_{i}={g}_{i-1}^{-1}{g}_{i}$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n \n <mo>≤</mo>\n \n <mi>i</mi>\n \n <mo>≤</mo>\n \n <mi>m</mi>\n </mrow>\n <annotation> $1\\le i\\le m$</annotation>\n </semantics></math>. We say that <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is doubly sequenceable if there exists a sequence <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n </mrow>\n <annotation> ${\\bf{g}}$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that every element of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> appears exactly twice in each of <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n </mrow>\n <annotation> ${\\bf{g}}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>g</mi>\n \n <mo>¯</mo>\n </mover>\n </mrow>\n <annotation> $\\bar{{\\bf{g}}}$</annotation>\n </semantics></math>. We show that if a group is abelian, odd, sequenceable, <i>R</i>-sequenceable, or terraceable, then it is doubly sequenceable. We also show that if <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is an odd or sequenceable group and <span></span><math>\n <semantics>\n <mrow>\n <mi>K</mi>\n </mrow>\n <annotation> $K$</annotation>\n </semantics></math> is an abelian group, then <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n \n <mo>×</mo>\n \n <mi>K</mi>\n </mrow>\n <annotation> $H\\times K$</annotation>\n </semantics></math> is doubly sequenceable.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 7","pages":"371-387"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21939","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a sequence g : g 0 , , g m ${\bf{g}}:{g}_{0},{\rm{\ldots }},{g}_{m}$ in a finite group G $G$ with g 0 = 1 G ${g}_{0}={1}_{G}$ , let g ¯ : g ¯ 0 , , g ¯ m $\bar{{\bf{g}}}:{\bar{g}}_{0},{\rm{\ldots }},{\bar{g}}_{m}$ be the sequence of consecutive quotients of g ${\bf{g}}$ defined by g ¯ 0 = 1 G ${\bar{g}}_{0}={1}_{G}$ and g ¯ i = g i 1 1 g i ${\bar{g}}_{i}={g}_{i-1}^{-1}{g}_{i}$ for 1 i m $1\le i\le m$ . We say that G $G$ is doubly sequenceable if there exists a sequence g ${\bf{g}}$ in G $G$ such that every element of G $G$ appears exactly twice in each of g ${\bf{g}}$ and g ¯ $\bar{{\bf{g}}}$ . We show that if a group is abelian, odd, sequenceable, R-sequenceable, or terraceable, then it is doubly sequenceable. We also show that if H $H$ is an odd or sequenceable group and K $K$ is an abelian group, then H × K $H\times K$ is doubly sequenceable.

双序列群
给定有限群 G$G$ 中的序列 g:g0,...,gm${bf{g}}:{g}_{0},{\rm{\ldots }},{g}_{m}$,其中 g0=1G${g}_{0}={1}_{G}$, 让 g¯:g¯0,...,g¯m$\bar{\bf{g}}}:{\bar{g}}_{0},{\rm{\ldots }}、{\bar{g}}_{m}$ 是 g${bf{g}}$ 的连续商序列,定义为 g¯0=1G${\bar{g}}_{0}={1}_{G}$ 和 g¯i=gi-1-1gi${\bar{g}}_{i}={g}_{i-1}^{-1}{g}_{i}$ for 1≤i≤m$1\le i\le m$.如果在 G$G$ 中存在一个序列 g${/bf{g}}$,使得 G$G$ 的每个元素在 g${/bf{g}}$ 和 g¯$\bar{/bf{g}}$ 中都恰好出现两次,那么我们就说 G$G$ 是双重可序列的。我们证明,如果一个群是无性的、奇数的、可序列的、R-可序列的或梯级可序列的,那么它就是双重可序列的。我们还证明,如果 H$H$ 是奇群或可排序群,而 K$K$ 是无边群,那么 H×K$H\times K$ 是双重可排序的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信