Daniel R. Hawtin
求助PDF
{"title":"无穷维 q-Steiner 系统大集合的显式构造","authors":"Daniel R. Hawtin","doi":"10.1002/jcd.21942","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n \n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> be a vector space over the finite field <span></span><math>\n \n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> ${{\\mathbb{F}}}_{q}$</annotation>\n </semantics></math>. A <span></span><math>\n \n <semantics>\n <mrow>\n <mi>q</mi>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math>-<i>Steiner system</i>, or an <span></span><math>\n \n <semantics>\n <mrow>\n <mi>S</mi>\n \n <msub>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>V</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> $S{(t,k,V)}_{q}$</annotation>\n </semantics></math>, is a collection <span></span><math>\n \n <semantics>\n <mrow>\n <mi>ℬ</mi>\n </mrow>\n <annotation> ${\\rm{{\\mathcal B}}}$</annotation>\n </semantics></math> of <span></span><math>\n \n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-dimensional subspaces of <span></span><math>\n \n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> such that every <span></span><math>\n \n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>-dimensional subspace of <span></span><math>\n \n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> is contained in a unique element of <span></span><math>\n \n <semantics>\n <mrow>\n <mi>ℬ</mi>\n </mrow>\n <annotation> ${\\rm{{\\mathcal B}}}$</annotation>\n </semantics></math>. A <i>large set</i> of <span></span><math>\n \n <semantics>\n <mrow>\n <mi>q</mi>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math>-Steiner systems, or an <span></span><math>\n \n <semantics>\n <mrow>\n <mi>L</mi>\n \n <mi>S</mi>\n \n <msub>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>V</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> $LS{(t,k,V)}_{q}$</annotation>\n </semantics></math>, is a partition of the <span></span><math>\n \n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-dimensional subspaces of <span></span><math>\n \n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> into <span></span><math>\n \n <semantics>\n <mrow>\n <mi>S</mi>\n \n <msub>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>V</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> $S{(t,k,V)}_{q}$</annotation>\n </semantics></math> systems. In the case that <span></span><math>\n \n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> has infinite dimension, the existence of an <span></span><math>\n \n <semantics>\n <mrow>\n <mi>L</mi>\n \n <mi>S</mi>\n \n <msub>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>V</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> $LS{(t,k,V)}_{q}$</annotation>\n </semantics></math> for all finite <span></span><math>\n \n <semantics>\n <mrow>\n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n <annotation> $t,k$</annotation>\n </semantics></math> with <span></span><math>\n \n <semantics>\n <mrow>\n <mn>1</mn>\n \n <mo><</mo>\n \n <mi>t</mi>\n \n <mo><</mo>\n \n <mi>k</mi>\n </mrow>\n <annotation> $1\\lt t\\lt k$</annotation>\n </semantics></math> was shown abstractly by Cameron in 1995. This paper provides an explicit construction of an <span></span><math>\n \n <semantics>\n <mrow>\n <mi>L</mi>\n \n <mi>S</mi>\n \n <msub>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>V</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> $LS{(t,t+1,V)}_{q}$</annotation>\n </semantics></math> for all prime powers <span></span><math>\n \n <semantics>\n <mrow>\n <mi>q</mi>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math>, all positive integers <span></span><math>\n \n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>, and where <span></span><math>\n \n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> has countably infinite dimension.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 8","pages":"413-418"},"PeriodicalIF":0.5000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An explicit construction for large sets of infinite dimensional \\n \\n \\n q\\n \\n $q$\\n -Steiner systems\",\"authors\":\"Daniel R. Hawtin\",\"doi\":\"10.1002/jcd.21942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>V</mi>\\n </mrow>\\n <annotation> $V$</annotation>\\n </semantics></math> be a vector space over the finite field <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mi>q</mi>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\mathbb{F}}}_{q}$</annotation>\\n </semantics></math>. A <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <annotation> $q$</annotation>\\n </semantics></math>-<i>Steiner system</i>, or an <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n \\n <msub>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>V</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mi>q</mi>\\n </msub>\\n </mrow>\\n <annotation> $S{(t,k,V)}_{q}$</annotation>\\n </semantics></math>, is a collection <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>ℬ</mi>\\n </mrow>\\n <annotation> ${\\\\rm{{\\\\mathcal B}}}$</annotation>\\n </semantics></math> of <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-dimensional subspaces of <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>V</mi>\\n </mrow>\\n <annotation> $V$</annotation>\\n </semantics></math> such that every <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <annotation> $t$</annotation>\\n </semantics></math>-dimensional subspace of <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>V</mi>\\n </mrow>\\n <annotation> $V$</annotation>\\n </semantics></math> is contained in a unique element of <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>ℬ</mi>\\n </mrow>\\n <annotation> ${\\\\rm{{\\\\mathcal B}}}$</annotation>\\n </semantics></math>. A <i>large set</i> of <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <annotation> $q$</annotation>\\n </semantics></math>-Steiner systems, or an <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n \\n <mi>S</mi>\\n \\n <msub>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>V</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mi>q</mi>\\n </msub>\\n </mrow>\\n <annotation> $LS{(t,k,V)}_{q}$</annotation>\\n </semantics></math>, is a partition of the <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-dimensional subspaces of <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>V</mi>\\n </mrow>\\n <annotation> $V$</annotation>\\n </semantics></math> into <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n \\n <msub>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>V</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mi>q</mi>\\n </msub>\\n </mrow>\\n <annotation> $S{(t,k,V)}_{q}$</annotation>\\n </semantics></math> systems. In the case that <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>V</mi>\\n </mrow>\\n <annotation> $V$</annotation>\\n </semantics></math> has infinite dimension, the existence of an <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n \\n <mi>S</mi>\\n \\n <msub>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n \\n <mo>,</mo>\\n \\n <mi>V</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mi>q</mi>\\n </msub>\\n </mrow>\\n <annotation> $LS{(t,k,V)}_{q}$</annotation>\\n </semantics></math> for all finite <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n <annotation> $t,k$</annotation>\\n </semantics></math> with <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n \\n <mo><</mo>\\n \\n <mi>t</mi>\\n \\n <mo><</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n <annotation> $1\\\\lt t\\\\lt k$</annotation>\\n </semantics></math> was shown abstractly by Cameron in 1995. This paper provides an explicit construction of an <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n \\n <mi>S</mi>\\n \\n <msub>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>t</mi>\\n \\n <mo>,</mo>\\n \\n <mi>t</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mi>V</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mi>q</mi>\\n </msub>\\n </mrow>\\n <annotation> $LS{(t,t+1,V)}_{q}$</annotation>\\n </semantics></math> for all prime powers <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <annotation> $q$</annotation>\\n </semantics></math>, all positive integers <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <annotation> $t$</annotation>\\n </semantics></math>, and where <span></span><math>\\n \\n <semantics>\\n <mrow>\\n <mi>V</mi>\\n </mrow>\\n <annotation> $V$</annotation>\\n </semantics></math> has countably infinite dimension.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"32 8\",\"pages\":\"413-418\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21942\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21942","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
设 V$V$ 是有限域 Fq${{\mathbb{F}}}_{q}$ 上的向量空间。一个 q$q$-Steiner 系统或一个 S(t,k,V)q$S{(t,k,V)}_{q}$ 是ℬ$\{rm{ {\mathcal B}}$ 的集合。V$V$ 的 k$k$ 维子空间的集合,使得 V$V$ 的每个 t$t$ 维子空间都包含在ℬ${rm{ {\mathcal B}}$ 的唯一元素中。}}}$.一大组 q$q$-Steiner 系统或 LS(t,k,V)q$LS{(t,k,V)}_{q}$ 是将 V$V$ 的 k$k$ 维子空间划分为 S(t,k,V)q$S{(t,k,V)}_{q}$ 系统。在 V$V$ 具有无限维的情况下,卡梅伦在 1995 年抽象地证明了对于所有有限的 t,kt,k$,1<t<k$1\lt t\lt k$,LS(t,k,V)q$LS{(t,k,V)}_{q}$的存在。本文明确地构造了 LS(t,t+1,V)q$LS{(t,t+1,V)}_{q}$ ,适用于所有素数幂 q$q$,所有正整数 t$t$,且 V$V$ 具有可数无限维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。