求助PDF
{"title":"三个元环群的群联方案的特尔维利格代数","authors":"Jing Yang, Xiaoqian Zhang, Lihua Feng","doi":"10.1002/jcd.21941","DOIUrl":null,"url":null,"abstract":"<p>For any finite group <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>, the Terwilliger algebra <span></span><math>\n \n <mrow>\n <mi>T</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> of the group association scheme satisfies the following inclusions: <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mn>0</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⊆</mo>\n \n <mi>T</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⊆</mo>\n \n <mover>\n <mi>T</mi>\n \n <mo>˜</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>, where <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mn>0</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is a specific vector space and <span></span><math>\n \n <mrow>\n <mover>\n <mi>T</mi>\n \n <mo>˜</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is the centralizer algebra of the permutation representation of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> induced by the action of conjugation. The group <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is said to be triply transitive if <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mn>0</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mover>\n <mi>T</mi>\n \n <mo>˜</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>. In this paper, we determine the dimensions of <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mn>0</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <mover>\n <mi>T</mi>\n \n <mo>˜</mo>\n </mover>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> for <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> being <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n \n <mo>=</mo>\n \n <mrow>\n <mo>〈</mo>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <mi>b</mi>\n \n <mo>∣</mo>\n \n <msup>\n <mi>a</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n </msup>\n \n <mo>=</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <msup>\n <mi>a</mi>\n \n <mi>n</mi>\n </msup>\n \n <mo>=</mo>\n \n <msup>\n <mi>b</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>,</mo>\n \n <mi>b</mi>\n \n <mi>a</mi>\n \n <msup>\n <mi>b</mi>\n \n <mrow>\n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </msup>\n \n <mo>=</mo>\n \n <msup>\n <mi>a</mi>\n \n <mi>k</mi>\n </msup>\n </mrow>\n \n <mo>〉</mo>\n </mrow>\n </mrow></math>, <span></span><math>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>⋊</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>p</mi>\n </msub>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>p</mi>\n </msub>\n \n <mo>⋊</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>n</mi>\n </msub>\n </mrow></math>, and show that <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>⋊</mo>\n \n <msub>\n <mi>C</mi>\n \n <mn>2</mn>\n </msub>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mn>3</mn>\n </msub>\n \n <mo>⋊</mo>\n \n <msub>\n <mi>C</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n </msub>\n </mrow></math> are triply transitive. Additionally, we give a complete characterization of the Wedderburn components of the Terwilliger algebras of <span></span><math>\n \n <mrow>\n <msub>\n <mi>T</mi>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n </mrow></math>, <span></span><math>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>⋊</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>p</mi>\n </msub>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>p</mi>\n </msub>\n \n <mo>⋊</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>n</mi>\n </msub>\n </mrow></math> when they are triply transitive.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 8","pages":"438-463"},"PeriodicalIF":0.5000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Terwilliger algebras of the group association schemes of three metacyclic groups\",\"authors\":\"Jing Yang, Xiaoqian Zhang, Lihua Feng\",\"doi\":\"10.1002/jcd.21941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For any finite group <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math>, the Terwilliger algebra <span></span><math>\\n \\n <mrow>\\n <mi>T</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> of the group association scheme satisfies the following inclusions: <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mn>0</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⊆</mo>\\n \\n <mi>T</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⊆</mo>\\n \\n <mover>\\n <mi>T</mi>\\n \\n <mo>˜</mo>\\n </mover>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>, where <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mn>0</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> is a specific vector space and <span></span><math>\\n \\n <mrow>\\n <mover>\\n <mi>T</mi>\\n \\n <mo>˜</mo>\\n </mover>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> is the centralizer algebra of the permutation representation of <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> induced by the action of conjugation. The group <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is said to be triply transitive if <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mn>0</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mover>\\n <mi>T</mi>\\n \\n <mo>˜</mo>\\n </mover>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>. In this paper, we determine the dimensions of <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mn>0</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> and <span></span><math>\\n \\n <mrow>\\n <mover>\\n <mi>T</mi>\\n \\n <mo>˜</mo>\\n </mover>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> for <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> being <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </msub>\\n \\n <mo>=</mo>\\n \\n <mrow>\\n <mo>〈</mo>\\n \\n <mrow>\\n <mi>a</mi>\\n \\n <mo>,</mo>\\n \\n <mi>b</mi>\\n \\n <mo>∣</mo>\\n \\n <msup>\\n <mi>a</mi>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n </mrow>\\n </msup>\\n \\n <mo>=</mo>\\n \\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mi>a</mi>\\n \\n <mi>n</mi>\\n </msup>\\n \\n <mo>=</mo>\\n \\n <msup>\\n <mi>b</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>,</mo>\\n \\n <mi>b</mi>\\n \\n <mi>a</mi>\\n \\n <msup>\\n <mi>b</mi>\\n \\n <mrow>\\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msup>\\n \\n <mo>=</mo>\\n \\n <msup>\\n <mi>a</mi>\\n \\n <mi>k</mi>\\n </msup>\\n </mrow>\\n \\n <mo>〉</mo>\\n </mrow>\\n </mrow></math>, <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mo>⋊</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mi>p</mi>\\n </msub>\\n </mrow></math> and <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mi>p</mi>\\n </msub>\\n \\n <mo>⋊</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mi>n</mi>\\n </msub>\\n </mrow></math>, and show that <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mo>⋊</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow></math> and <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mn>3</mn>\\n </msub>\\n \\n <mo>⋊</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n </mrow>\\n </msub>\\n </mrow></math> are triply transitive. Additionally, we give a complete characterization of the Wedderburn components of the Terwilliger algebras of <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>T</mi>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </msub>\\n </mrow></math>, <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mi>n</mi>\\n </msub>\\n \\n <mo>⋊</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mi>p</mi>\\n </msub>\\n </mrow></math> and <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mi>p</mi>\\n </msub>\\n \\n <mo>⋊</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mi>n</mi>\\n </msub>\\n </mrow></math> when they are triply transitive.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"32 8\",\"pages\":\"438-463\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21941\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21941","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用