{"title":"PG(3,q)室上克奈瑟图的最大茧和色度数","authors":"Philipp Heering, Klaus Metsch","doi":"10.1002/jcd.21940","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation> ${\\rm{\\Gamma }}$</annotation>\n </semantics></math> be the graph whose vertices are the chambers of the finite projective 3-space <span></span><math>\n <semantics>\n <mrow>\n <mtext>PG</mtext>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>3</mn>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{PG}(3,q)$</annotation>\n </semantics></math>, with two vertices being adjacent if and only if the corresponding chambers are in general position. We show that a maximal independent set of vertices of <span></span><math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation> ${\\rm{\\Gamma }}$</annotation>\n </semantics></math> contains <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>q</mi>\n <mn>4</mn>\n </msup>\n <mo>+</mo>\n <mn>3</mn>\n <msup>\n <mi>q</mi>\n <mn>3</mn>\n </msup>\n <mo>+</mo>\n <mn>4</mn>\n <msup>\n <mi>q</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mn>3</mn>\n <mi>q</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation> ${q}^{4}+3{q}^{3}+4{q}^{2}+3q+1$</annotation>\n </semantics></math>, or <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <msup>\n <mi>q</mi>\n <mn>3</mn>\n </msup>\n <mo>+</mo>\n <mn>5</mn>\n <msup>\n <mi>q</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mn>3</mn>\n <mi>q</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation> $3{q}^{3}+5{q}^{2}+3q+1$</annotation>\n </semantics></math>, or at most <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <msup>\n <mi>q</mi>\n <mn>3</mn>\n </msup>\n <mo>+</mo>\n <mn>4</mn>\n <msup>\n <mi>q</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mn>3</mn>\n <mi>q</mi>\n <mo>+</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $3{q}^{3}+4{q}^{2}+3q+2$</annotation>\n </semantics></math> elements. For <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>≥</mo>\n <mn>4</mn>\n </mrow>\n <annotation> $q\\ge 4$</annotation>\n </semantics></math> the structure of the largest maximal independent sets is described. For <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>≥</mo>\n <mn>7</mn>\n </mrow>\n <annotation> $q\\ge 7$</annotation>\n </semantics></math> the structure of the maximal independent sets of the three largest cardinalities is described. Using the cardinality of the second largest maximal independent sets, we show that the chromatic number of <span></span><math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation> ${\\rm{\\Gamma }}$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>q</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mi>q</mi>\n </mrow>\n <annotation> ${q}^{2}+q$</annotation>\n </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 7","pages":"388-409"},"PeriodicalIF":0.5000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21940","citationCount":"0","resultStr":"{\"title\":\"Maximal cocliques and the chromatic number of the Kneser graph on chambers of PG\\n \\n \\n \\n (\\n \\n 3\\n ,\\n q\\n \\n )\\n \\n \\n $(3,q)$\",\"authors\":\"Philipp Heering, Klaus Metsch\",\"doi\":\"10.1002/jcd.21940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Gamma }}$</annotation>\\n </semantics></math> be the graph whose vertices are the chambers of the finite projective 3-space <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>PG</mtext>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>3</mn>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{PG}(3,q)$</annotation>\\n </semantics></math>, with two vertices being adjacent if and only if the corresponding chambers are in general position. We show that a maximal independent set of vertices of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Gamma }}$</annotation>\\n </semantics></math> contains <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>q</mi>\\n <mn>4</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>3</mn>\\n <msup>\\n <mi>q</mi>\\n <mn>3</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>4</mn>\\n <msup>\\n <mi>q</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>3</mn>\\n <mi>q</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> ${q}^{4}+3{q}^{3}+4{q}^{2}+3q+1$</annotation>\\n </semantics></math>, or <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <msup>\\n <mi>q</mi>\\n <mn>3</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>5</mn>\\n <msup>\\n <mi>q</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>3</mn>\\n <mi>q</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> $3{q}^{3}+5{q}^{2}+3q+1$</annotation>\\n </semantics></math>, or at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <msup>\\n <mi>q</mi>\\n <mn>3</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>4</mn>\\n <msup>\\n <mi>q</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>3</mn>\\n <mi>q</mi>\\n <mo>+</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> $3{q}^{3}+4{q}^{2}+3q+2$</annotation>\\n </semantics></math> elements. For <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>≥</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation> $q\\\\ge 4$</annotation>\\n </semantics></math> the structure of the largest maximal independent sets is described. For <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>≥</mo>\\n <mn>7</mn>\\n </mrow>\\n <annotation> $q\\\\ge 7$</annotation>\\n </semantics></math> the structure of the maximal independent sets of the three largest cardinalities is described. Using the cardinality of the second largest maximal independent sets, we show that the chromatic number of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Gamma }}$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>q</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <mi>q</mi>\\n </mrow>\\n <annotation> ${q}^{2}+q$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"32 7\",\"pages\":\"388-409\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21940\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21940\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21940","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Maximal cocliques and the chromatic number of the Kneser graph on chambers of PG
(
3
,
q
)
$(3,q)$
Let be the graph whose vertices are the chambers of the finite projective 3-space , with two vertices being adjacent if and only if the corresponding chambers are in general position. We show that a maximal independent set of vertices of contains , or , or at most elements. For the structure of the largest maximal independent sets is described. For the structure of the maximal independent sets of the three largest cardinalities is described. Using the cardinality of the second largest maximal independent sets, we show that the chromatic number of is .
期刊介绍:
The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including:
block designs, t-designs, pairwise balanced designs and group divisible designs
Latin squares, quasigroups, and related algebras
computational methods in design theory
construction methods
applications in computer science, experimental design theory, and coding theory
graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics
finite geometry and its relation with design theory.
algebraic aspects of design theory.
Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.