PG(3,q)室上克奈瑟图的最大茧和色度数

IF 0.5 4区 数学 Q3 MATHEMATICS
Philipp Heering, Klaus Metsch
{"title":"PG(3,q)室上克奈瑟图的最大茧和色度数","authors":"Philipp Heering,&nbsp;Klaus Metsch","doi":"10.1002/jcd.21940","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation> ${\\rm{\\Gamma }}$</annotation>\n </semantics></math> be the graph whose vertices are the chambers of the finite projective 3-space <span></span><math>\n <semantics>\n <mrow>\n <mtext>PG</mtext>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>3</mn>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{PG}(3,q)$</annotation>\n </semantics></math>, with two vertices being adjacent if and only if the corresponding chambers are in general position. We show that a maximal independent set of vertices of <span></span><math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation> ${\\rm{\\Gamma }}$</annotation>\n </semantics></math> contains <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>q</mi>\n <mn>4</mn>\n </msup>\n <mo>+</mo>\n <mn>3</mn>\n <msup>\n <mi>q</mi>\n <mn>3</mn>\n </msup>\n <mo>+</mo>\n <mn>4</mn>\n <msup>\n <mi>q</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mn>3</mn>\n <mi>q</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation> ${q}^{4}+3{q}^{3}+4{q}^{2}+3q+1$</annotation>\n </semantics></math>, or <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <msup>\n <mi>q</mi>\n <mn>3</mn>\n </msup>\n <mo>+</mo>\n <mn>5</mn>\n <msup>\n <mi>q</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mn>3</mn>\n <mi>q</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation> $3{q}^{3}+5{q}^{2}+3q+1$</annotation>\n </semantics></math>, or at most <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <msup>\n <mi>q</mi>\n <mn>3</mn>\n </msup>\n <mo>+</mo>\n <mn>4</mn>\n <msup>\n <mi>q</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mn>3</mn>\n <mi>q</mi>\n <mo>+</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $3{q}^{3}+4{q}^{2}+3q+2$</annotation>\n </semantics></math> elements. For <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>≥</mo>\n <mn>4</mn>\n </mrow>\n <annotation> $q\\ge 4$</annotation>\n </semantics></math> the structure of the largest maximal independent sets is described. For <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>≥</mo>\n <mn>7</mn>\n </mrow>\n <annotation> $q\\ge 7$</annotation>\n </semantics></math> the structure of the maximal independent sets of the three largest cardinalities is described. Using the cardinality of the second largest maximal independent sets, we show that the chromatic number of <span></span><math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation> ${\\rm{\\Gamma }}$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>q</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mi>q</mi>\n </mrow>\n <annotation> ${q}^{2}+q$</annotation>\n </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 7","pages":"388-409"},"PeriodicalIF":0.5000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21940","citationCount":"0","resultStr":"{\"title\":\"Maximal cocliques and the chromatic number of the Kneser graph on chambers of PG\\n \\n \\n \\n (\\n \\n 3\\n ,\\n q\\n \\n )\\n \\n \\n $(3,q)$\",\"authors\":\"Philipp Heering,&nbsp;Klaus Metsch\",\"doi\":\"10.1002/jcd.21940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Gamma }}$</annotation>\\n </semantics></math> be the graph whose vertices are the chambers of the finite projective 3-space <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>PG</mtext>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>3</mn>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{PG}(3,q)$</annotation>\\n </semantics></math>, with two vertices being adjacent if and only if the corresponding chambers are in general position. We show that a maximal independent set of vertices of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Gamma }}$</annotation>\\n </semantics></math> contains <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>q</mi>\\n <mn>4</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>3</mn>\\n <msup>\\n <mi>q</mi>\\n <mn>3</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>4</mn>\\n <msup>\\n <mi>q</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>3</mn>\\n <mi>q</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> ${q}^{4}+3{q}^{3}+4{q}^{2}+3q+1$</annotation>\\n </semantics></math>, or <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <msup>\\n <mi>q</mi>\\n <mn>3</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>5</mn>\\n <msup>\\n <mi>q</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>3</mn>\\n <mi>q</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> $3{q}^{3}+5{q}^{2}+3q+1$</annotation>\\n </semantics></math>, or at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <msup>\\n <mi>q</mi>\\n <mn>3</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>4</mn>\\n <msup>\\n <mi>q</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>3</mn>\\n <mi>q</mi>\\n <mo>+</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> $3{q}^{3}+4{q}^{2}+3q+2$</annotation>\\n </semantics></math> elements. For <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>≥</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation> $q\\\\ge 4$</annotation>\\n </semantics></math> the structure of the largest maximal independent sets is described. For <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>≥</mo>\\n <mn>7</mn>\\n </mrow>\\n <annotation> $q\\\\ge 7$</annotation>\\n </semantics></math> the structure of the maximal independent sets of the three largest cardinalities is described. Using the cardinality of the second largest maximal independent sets, we show that the chromatic number of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Gamma }}$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>q</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <mi>q</mi>\\n </mrow>\\n <annotation> ${q}^{2}+q$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"32 7\",\"pages\":\"388-409\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21940\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21940\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21940","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 Γ${rm\{Gamma }}$ 是图,其顶点是有限投影 3 空间 PG(3,q)$text{PG}(3,q)$ 的室,当且仅当相应的室处于一般位置时,两个顶点相邻。我们证明Γ${rm{Gamma }}$的最大独立顶点集包含 q4+3q3+4q2+3q+1${q}^{4}+3{q}^{3}+4{q}^{2}+3q+1${q}^{4}+3{q}^{3}+4{q}^{2}+3q+1$、或 3q3+5q2+3q+1$3{q}^{3}+5{q}^{2}+3q+1$ 或至多 3q3+4q2+3q+2$3{q}^{3}+4{q}^{2}+3q+2$ 元素。对于 q≥4$q\ge 4$,描述了最大独立集的结构。对于 q≥7$q\ge 7$,描述了三个最大心数的最大独立集的结构。利用第二大最大独立集的心度,我们证明了Γ${rm{ganma }}$的色度数是 q2+q${q}^{2}+q$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal cocliques and the chromatic number of the Kneser graph on chambers of PG ( 3 , q ) $(3,q)$

Let Γ ${\rm{\Gamma }}$ be the graph whose vertices are the chambers of the finite projective 3-space PG ( 3 , q ) $\text{PG}(3,q)$ , with two vertices being adjacent if and only if the corresponding chambers are in general position. We show that a maximal independent set of vertices of Γ ${\rm{\Gamma }}$ contains q 4 + 3 q 3 + 4 q 2 + 3 q + 1 ${q}^{4}+3{q}^{3}+4{q}^{2}+3q+1$ , or 3 q 3 + 5 q 2 + 3 q + 1 $3{q}^{3}+5{q}^{2}+3q+1$ , or at most 3 q 3 + 4 q 2 + 3 q + 2 $3{q}^{3}+4{q}^{2}+3q+2$ elements. For q 4 $q\ge 4$ the structure of the largest maximal independent sets is described. For q 7 $q\ge 7$ the structure of the maximal independent sets of the three largest cardinalities is described. Using the cardinality of the second largest maximal independent sets, we show that the chromatic number of Γ ${\rm{\Gamma }}$ is q 2 + q ${q}^{2}+q$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信