{"title":"An explicit construction for large sets of infinite dimensional \n \n \n q\n \n $q$\n -Steiner systems","authors":"Daniel R. Hawtin","doi":"10.1002/jcd.21942","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n \n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> be a vector space over the finite field <span></span><math>\n \n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> ${{\\mathbb{F}}}_{q}$</annotation>\n </semantics></math>. A <span></span><math>\n \n <semantics>\n <mrow>\n <mi>q</mi>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math>-<i>Steiner system</i>, or an <span></span><math>\n \n <semantics>\n <mrow>\n <mi>S</mi>\n \n <msub>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>V</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> $S{(t,k,V)}_{q}$</annotation>\n </semantics></math>, is a collection <span></span><math>\n \n <semantics>\n <mrow>\n <mi>ℬ</mi>\n </mrow>\n <annotation> ${\\rm{{\\mathcal B}}}$</annotation>\n </semantics></math> of <span></span><math>\n \n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-dimensional subspaces of <span></span><math>\n \n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> such that every <span></span><math>\n \n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>-dimensional subspace of <span></span><math>\n \n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> is contained in a unique element of <span></span><math>\n \n <semantics>\n <mrow>\n <mi>ℬ</mi>\n </mrow>\n <annotation> ${\\rm{{\\mathcal B}}}$</annotation>\n </semantics></math>. A <i>large set</i> of <span></span><math>\n \n <semantics>\n <mrow>\n <mi>q</mi>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math>-Steiner systems, or an <span></span><math>\n \n <semantics>\n <mrow>\n <mi>L</mi>\n \n <mi>S</mi>\n \n <msub>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>V</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> $LS{(t,k,V)}_{q}$</annotation>\n </semantics></math>, is a partition of the <span></span><math>\n \n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-dimensional subspaces of <span></span><math>\n \n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> into <span></span><math>\n \n <semantics>\n <mrow>\n <mi>S</mi>\n \n <msub>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>V</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> $S{(t,k,V)}_{q}$</annotation>\n </semantics></math> systems. In the case that <span></span><math>\n \n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> has infinite dimension, the existence of an <span></span><math>\n \n <semantics>\n <mrow>\n <mi>L</mi>\n \n <mi>S</mi>\n \n <msub>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>V</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> $LS{(t,k,V)}_{q}$</annotation>\n </semantics></math> for all finite <span></span><math>\n \n <semantics>\n <mrow>\n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n <annotation> $t,k$</annotation>\n </semantics></math> with <span></span><math>\n \n <semantics>\n <mrow>\n <mn>1</mn>\n \n <mo><</mo>\n \n <mi>t</mi>\n \n <mo><</mo>\n \n <mi>k</mi>\n </mrow>\n <annotation> $1\\lt t\\lt k$</annotation>\n </semantics></math> was shown abstractly by Cameron in 1995. This paper provides an explicit construction of an <span></span><math>\n \n <semantics>\n <mrow>\n <mi>L</mi>\n \n <mi>S</mi>\n \n <msub>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>V</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> $LS{(t,t+1,V)}_{q}$</annotation>\n </semantics></math> for all prime powers <span></span><math>\n \n <semantics>\n <mrow>\n <mi>q</mi>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math>, all positive integers <span></span><math>\n \n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>, and where <span></span><math>\n \n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> has countably infinite dimension.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 8","pages":"413-418"},"PeriodicalIF":0.5000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21942","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a vector space over the finite field . A -Steiner system, or an , is a collection of -dimensional subspaces of such that every -dimensional subspace of is contained in a unique element of . A large set of -Steiner systems, or an , is a partition of the -dimensional subspaces of into systems. In the case that has infinite dimension, the existence of an for all finite with was shown abstractly by Cameron in 1995. This paper provides an explicit construction of an for all prime powers , all positive integers , and where has countably infinite dimension.
期刊介绍:
The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including:
block designs, t-designs, pairwise balanced designs and group divisible designs
Latin squares, quasigroups, and related algebras
computational methods in design theory
construction methods
applications in computer science, experimental design theory, and coding theory
graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics
finite geometry and its relation with design theory.
algebraic aspects of design theory.
Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.