An explicit construction for large sets of infinite dimensional q $q$ -Steiner systems

IF 0.5 4区 数学 Q3 MATHEMATICS
Daniel R. Hawtin
{"title":"An explicit construction for large sets of infinite dimensional \n \n \n q\n \n $q$\n -Steiner systems","authors":"Daniel R. Hawtin","doi":"10.1002/jcd.21942","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n \n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> be a vector space over the finite field <span></span><math>\n \n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> ${{\\mathbb{F}}}_{q}$</annotation>\n </semantics></math>. A <span></span><math>\n \n <semantics>\n <mrow>\n <mi>q</mi>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math>-<i>Steiner system</i>, or an <span></span><math>\n \n <semantics>\n <mrow>\n <mi>S</mi>\n \n <msub>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>V</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> $S{(t,k,V)}_{q}$</annotation>\n </semantics></math>, is a collection <span></span><math>\n \n <semantics>\n <mrow>\n <mi>ℬ</mi>\n </mrow>\n <annotation> ${\\rm{{\\mathcal B}}}$</annotation>\n </semantics></math> of <span></span><math>\n \n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-dimensional subspaces of <span></span><math>\n \n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> such that every <span></span><math>\n \n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>-dimensional subspace of <span></span><math>\n \n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> is contained in a unique element of <span></span><math>\n \n <semantics>\n <mrow>\n <mi>ℬ</mi>\n </mrow>\n <annotation> ${\\rm{{\\mathcal B}}}$</annotation>\n </semantics></math>. A <i>large set</i> of <span></span><math>\n \n <semantics>\n <mrow>\n <mi>q</mi>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math>-Steiner systems, or an <span></span><math>\n \n <semantics>\n <mrow>\n <mi>L</mi>\n \n <mi>S</mi>\n \n <msub>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>V</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> $LS{(t,k,V)}_{q}$</annotation>\n </semantics></math>, is a partition of the <span></span><math>\n \n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-dimensional subspaces of <span></span><math>\n \n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> into <span></span><math>\n \n <semantics>\n <mrow>\n <mi>S</mi>\n \n <msub>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>V</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> $S{(t,k,V)}_{q}$</annotation>\n </semantics></math> systems. In the case that <span></span><math>\n \n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> has infinite dimension, the existence of an <span></span><math>\n \n <semantics>\n <mrow>\n <mi>L</mi>\n \n <mi>S</mi>\n \n <msub>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>V</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> $LS{(t,k,V)}_{q}$</annotation>\n </semantics></math> for all finite <span></span><math>\n \n <semantics>\n <mrow>\n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n <annotation> $t,k$</annotation>\n </semantics></math> with <span></span><math>\n \n <semantics>\n <mrow>\n <mn>1</mn>\n \n <mo>&lt;</mo>\n \n <mi>t</mi>\n \n <mo>&lt;</mo>\n \n <mi>k</mi>\n </mrow>\n <annotation> $1\\lt t\\lt k$</annotation>\n </semantics></math> was shown abstractly by Cameron in 1995. This paper provides an explicit construction of an <span></span><math>\n \n <semantics>\n <mrow>\n <mi>L</mi>\n \n <mi>S</mi>\n \n <msub>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>t</mi>\n \n <mo>,</mo>\n \n <mi>t</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>V</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> $LS{(t,t+1,V)}_{q}$</annotation>\n </semantics></math> for all prime powers <span></span><math>\n \n <semantics>\n <mrow>\n <mi>q</mi>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math>, all positive integers <span></span><math>\n \n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>, and where <span></span><math>\n \n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation> $V$</annotation>\n </semantics></math> has countably infinite dimension.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 8","pages":"413-418"},"PeriodicalIF":0.5000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21942","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let V $V$ be a vector space over the finite field F q ${{\mathbb{F}}}_{q}$ . A q $q$ -Steiner system, or an S ( t , k , V ) q $S{(t,k,V)}_{q}$ , is a collection ${\rm{{\mathcal B}}}$ of k $k$ -dimensional subspaces of V $V$ such that every t $t$ -dimensional subspace of V $V$ is contained in a unique element of ${\rm{{\mathcal B}}}$ . A large set of q $q$ -Steiner systems, or an L S ( t , k , V ) q $LS{(t,k,V)}_{q}$ , is a partition of the k $k$ -dimensional subspaces of V $V$ into S ( t , k , V ) q $S{(t,k,V)}_{q}$ systems. In the case that V $V$ has infinite dimension, the existence of an L S ( t , k , V ) q $LS{(t,k,V)}_{q}$ for all finite t , k $t,k$ with 1 < t < k $1\lt t\lt k$ was shown abstractly by Cameron in 1995. This paper provides an explicit construction of an L S ( t , t + 1 , V ) q $LS{(t,t+1,V)}_{q}$ for all prime powers q $q$ , all positive integers t $t$ , and where V $V$ has countably infinite dimension.

无穷维 q-Steiner 系统大集合的显式构造
设 V$V$ 是有限域 Fq${{\mathbb{F}}}_{q}$ 上的向量空间。一个 q$q$-Steiner 系统或一个 S(t,k,V)q$S{(t,k,V)}_{q}$ 是ℬ$\{rm{ {\mathcal B}}$ 的集合。V$V$ 的 k$k$ 维子空间的集合,使得 V$V$ 的每个 t$t$ 维子空间都包含在ℬ${rm{ {\mathcal B}}$ 的唯一元素中。}}}$.一大组 q$q$-Steiner 系统或 LS(t,k,V)q$LS{(t,k,V)}_{q}$ 是将 V$V$ 的 k$k$ 维子空间划分为 S(t,k,V)q$S{(t,k,V)}_{q}$ 系统。在 V$V$ 具有无限维的情况下,卡梅伦在 1995 年抽象地证明了对于所有有限的 t,kt,k$,1<t<k$1\lt t\lt k$,LS(t,k,V)q$LS{(t,k,V)}_{q}$的存在。本文明确地构造了 LS(t,t+1,V)q$LS{(t,t+1,V)}_{q}$ ,适用于所有素数幂 q$q$,所有正整数 t$t$,且 V$V$ 具有可数无限维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信