New results on large sets of orthogonal arrays and orthogonal arrays

IF 0.5 4区 数学 Q3 MATHEMATICS
Guangzhou Chen, Xiaodong Niu, Jiufeng Shi
{"title":"New results on large sets of orthogonal arrays and orthogonal arrays","authors":"Guangzhou Chen,&nbsp;Xiaodong Niu,&nbsp;Jiufeng Shi","doi":"10.1002/jcd.21944","DOIUrl":null,"url":null,"abstract":"<p>Orthogonal array and a large set of orthogonal arrays are important research objects in combinatorial design theory, and they are widely applied to statistics, computer science, coding theory, and cryptography. In this paper, some new series of large sets of orthogonal arrays are given by direct construction, juxtaposition construction, Hadamard construction, finite field construction, and difference matrix construction. Subsequently, many new infinite classes of orthogonal arrays are obtained by using these large sets of orthogonal arrays and Kronecker product.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 8","pages":"488-515"},"PeriodicalIF":0.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21944","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Orthogonal array and a large set of orthogonal arrays are important research objects in combinatorial design theory, and they are widely applied to statistics, computer science, coding theory, and cryptography. In this paper, some new series of large sets of orthogonal arrays are given by direct construction, juxtaposition construction, Hadamard construction, finite field construction, and difference matrix construction. Subsequently, many new infinite classes of orthogonal arrays are obtained by using these large sets of orthogonal arrays and Kronecker product.

关于大型正交阵列集和正交阵列的新成果
正交数组和正交数组大集合是组合设计理论中的重要研究对象,被广泛应用于统计学、计算机科学、编码理论和密码学等领域。本文通过直接构造、并列构造、哈达玛构造、有限域构造和差分矩阵构造给出了一些新的正交阵列大集合系列。随后,利用这些大型正交阵列集和 Kronecker 积得到了许多新的无限类正交阵列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信