Journal of Biomaterials Applications最新文献

筛选
英文 中文
Preparation and application of nanosilver/nanocellulose composite antimicrobial strain-responsive dual network hydrogels. 纳米银/纳米纤维素复合抗菌双网水凝胶的制备及应用。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-05-27 DOI: 10.1177/08853282251340167
Qinwen Wang, Zhuoyan Xie, Aimin Tang, Wenjin Chen, Yingyao Liu
{"title":"Preparation and application of nanosilver/nanocellulose composite antimicrobial strain-responsive dual network hydrogels.","authors":"Qinwen Wang, Zhuoyan Xie, Aimin Tang, Wenjin Chen, Yingyao Liu","doi":"10.1177/08853282251340167","DOIUrl":"https://doi.org/10.1177/08853282251340167","url":null,"abstract":"<p><p>With the progress of science and technology, smart wearable devices prepared based on antimicrobial conductive hydrogels have come to have important applications in motion detection, medical monitoring, human-machine interface and soft robotics. On the basis of satisfying the performance of antimicrobial conductive, hydrogels also need to improve the mechanical properties to adapt to more wearable device applications. In this study, glycerol and agar were introduced on the basis of nanosilver/nanocellulose composite antimicrobial strain-responsive hydrogels (AP hydrogels), and nanosilver/nanocellulose composite antimicrobial strain-responsive dual-network hydrogel (APA-DN hydrogel) could be constructed by a two-step moulding method of thermal initiation and sol-gelation, and encapsulated into a strain-responsive sensor. Tensile fracture strain and stress of the APA-DN hydrogel could reach that concomitant with an elongation of 2182.0 mm. The tensile fracture strain and stress of the APA-DN hydrogel can reach 2182.71% and 279.76 kPa, and the modulus of elasticity and toughness can reach 36.35 kPa and 2772.98 kJ/m<sup>3</sup>, thereby realising enhanced mechanical properties on the basis of the AP hydrogel. The relative resistance of the APA-DN hydrogel sensors was stable in the range of 0-120% under 100% strain cycling, maintaining stable repeatability and durability of strain response. The APA-DN hydrogels are capable of outputting stable and reproducible electrical signals in the monitoring of hand and head movements, and they are expected to be applied in human behaviour detection by collecting and classifying the response signals in the future.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251340167"},"PeriodicalIF":2.3,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144150561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human osteoblast response to uncemented knee implant surface structures and osteoclast formation in vitro. 人成骨细胞对非骨水泥膝关节假体表面结构和破骨细胞形成的反应。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-05-25 DOI: 10.1177/08853282251346324
Raymond Puijk, Behrouz Zandieh-Doulabi, Wendy J A M Runderkamp, Bart G Pijls, Jenneke Klein-Nulend, Peter A Nolte
{"title":"Human osteoblast response to uncemented knee implant surface structures and osteoclast formation in vitro.","authors":"Raymond Puijk, Behrouz Zandieh-Doulabi, Wendy J A M Runderkamp, Bart G Pijls, Jenneke Klein-Nulend, Peter A Nolte","doi":"10.1177/08853282251346324","DOIUrl":"https://doi.org/10.1177/08853282251346324","url":null,"abstract":"<p><p>Early bone ingrowth and minimal resorption ensure rigid fixation in uncemented total knee replacements. Trabecular titanium-aluminum-vanadium (Ti6Al4V) and hydroxyapatite (HA)-coated vacuum-plasma-sprayed (VPS) titanium with varying porosities and HA-coating thicknesses, have been developed to enhance fixation, though bone cellular response remains largely unknown. This study evaluated osteoblast responses to trabecular Ti6Al4V and three VPS titanium surfaces with 20%-40% or 30%-70% porosity and HA coatings of 60, 80, or 90 µm. Human primary osteoblasts were seeded and cultured for 29 days, to assess seeding efficiency, viability, metabolic activity, alkaline phosphatase activity, and the effect of osteoblast-released factors in conditioned medium during the last 4 days of culture on osteoclast formation. VPS-HA groups were first compared individually; when no differences were found, data were pooled for comparison with the trabecular group. Osteoblast seeding efficiency, viability, metabolic activity, and alkaline phosphatase activity were similar between VPS-HA surfaces. Moreover, osteoblast-conditioned medium did not affect osteoclast formation. Osteoblast seeding efficiency and viability were similar between the pooled VPS-HA and trabecular surface. Compared to the pooled VPS-HA, the trabecular surface increased osteoblast metabolic (1.5-2.7-fold) and alkaline phosphatase activity (6.5-15.2-fold). Osteoblast-conditioned medium reduced osteoclast formation (2.1-3.4-fold) on trabecular compared to the pooled VPS-HA surface. In conclusion, these findings show that VPS-HA surfaces with various porosities and HA-coating thicknesses similarly affect osteoblast and osteoclast responses, while trabecular surfaces enhance osteoblast responsiveness and inhibit osteoclast formation. These results might help to further improve early stability and reduce long-term loosening risk in uncemented knee replacements.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251346324"},"PeriodicalIF":2.3,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144142653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and evaluation of sodium alginate-based hydrogel containing green tea for the treatment of diabetic ulcers in rat model. 含绿茶海藻酸钠水凝胶治疗糖尿病大鼠模型溃疡的设计与评价。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-05-21 DOI: 10.1177/08853282251345004
Pirasteh Norouzi, Nariman Rezaei Kolarijani, Naimeh Mahheidari, Arian Ehterami, Arindam Bit, Anneh Mohammad Gharravi, Seyed Meysam Yekesadat, Seyedeh Nazanin Aghayan, Saeed Haghi-Daredeh, Majid Salehi
{"title":"Design and evaluation of sodium alginate-based hydrogel containing green tea for the treatment of diabetic ulcers in rat model.","authors":"Pirasteh Norouzi, Nariman Rezaei Kolarijani, Naimeh Mahheidari, Arian Ehterami, Arindam Bit, Anneh Mohammad Gharravi, Seyed Meysam Yekesadat, Seyedeh Nazanin Aghayan, Saeed Haghi-Daredeh, Majid Salehi","doi":"10.1177/08853282251345004","DOIUrl":"https://doi.org/10.1177/08853282251345004","url":null,"abstract":"<p><p>A functional and biocompatible biomaterial is essential for accelerating the regeneration of skin tissue at the wound site. Hydrogel scaffolds in three dimensions show promising candidates for this purpose. This study was conducted to design a novel porous cross-linked alginate (Alg) hydrogel containing green tea (GT) and assess its morphology, swelling, weight loss, hemocompatibility, and cytocompatibility. Ultimately, the created hydrogel's therapeutic effectiveness was examined in a complete dermal diabetes wound model. The findings indicated that the hydrogel prepared had significant porosity, with interconnected pores around 75.821 µm in size. The weight loss evaluation indicated that the created hydrogel can be degraded naturally, with a weight loss ratio of about 74% for Alg/GT 80 mg after being incubated for 24 hours. Additionally, the study indicated that hydrogel dressings exhibited greater wound closure compared to gauze-treated wounds, which served as the control. The group with GT at a concentration of 80 mg showed the highest percentage of wound closure. The histopathological studies and IHC evaluation for TGF-β1 confirmed the in vivo finding. This study proposes utilizing 3D Alg hydrogels with GT as a wound dressing, but further studies are needed.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251345004"},"PeriodicalIF":2.3,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144119735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promotion of endothelialization of silk functionalized with IKVAV peptide and production of silk containing IKVAV-REDV sequence by transgenic silkworms. 转基因家蚕促进IKVAV肽功能化蚕丝的内皮化及产生含有IKVAV- redv序列的蚕丝。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-05-20 DOI: 10.1177/08853282251345003
Tetsuo Asakura, Tatsuya Hayashi, Takashi Tanaka, Ken-Ichiro Tatematsu, Hideki Sezutsu
{"title":"Promotion of endothelialization of silk functionalized with IKVAV peptide and production of silk containing IKVAV-REDV sequence by transgenic silkworms.","authors":"Tetsuo Asakura, Tatsuya Hayashi, Takashi Tanaka, Ken-Ichiro Tatematsu, Hideki Sezutsu","doi":"10.1177/08853282251345003","DOIUrl":"https://doi.org/10.1177/08853282251345003","url":null,"abstract":"<p><p>Early endothelialization and the prevention of platelet adhesion are crucial in the development of small-diameter vascular grafts to prevent thrombus formation and intimal thickening. Silk fibroin (SF) from <i>Bombyx mori</i> is commonly used for such grafts. In our previous study, we found that silk vascular grafts coated with sponge-like transgenic (TG) silk incorporating the arginine-glutamic acid-aspartate-valine (REDV) peptide and transplanted into rats yielded favorable results. In this study, we aimed to achieve even better results by incorporating additional peptides into TG silk containing REDV and coating silk vascular grafts with this sponge. Initially, we sought to identify such peptides. We attempted to immobilize several peptides containing REDV onto silk using cyanuric chloride. Cell culture experiments with normal human umbilical vein endothelial cells (HUVECs) were performed on SF, SF+REDV, SF + arginine-glycine- aspartate (RGD), SF+cysteine-alanine-glycine (CAG), and SF + isoleucine-lysine- valine- alanine-valine (IKVAV) films to assess adhesion, proliferation, and extensibility; SF+RGD and SF+IKVAV films demonstrated high adhesion behavior of HUVECs. In addition, platelet adhesion on these SF+peptide films was evaluated. Platelet adhesion strength was much higher on SF+RGD films than on other SF+peptide films. These results suggest that IKVAV may be the most suitable peptide for coating SF vascular grafts. Subsequently, we successfully produced TG silk incorporating IKVAV+REDV. We then coated small-diameter silk vascular grafts with sponge-like TG silk incorporating IKVAV+REDV and measured its physical properties.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251345003"},"PeriodicalIF":2.3,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144110933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genipin stabilized fibrin microbeads: Carrying cytokines to form niches for stem cell differentiation. Genipin稳定纤维蛋白微珠:携带细胞因子形成干细胞分化的壁龛。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-05-20 DOI: 10.1177/08853282251344394
Qian Chen, Pingping Hu, Wenjing Yang, Xiuquan Xu, Genbao Shao
{"title":"Genipin stabilized fibrin microbeads: Carrying cytokines to form niches for stem cell differentiation.","authors":"Qian Chen, Pingping Hu, Wenjing Yang, Xiuquan Xu, Genbao Shao","doi":"10.1177/08853282251344394","DOIUrl":"https://doi.org/10.1177/08853282251344394","url":null,"abstract":"<p><p>Niches, which are combinations of extracellular matrix and cytokines, play essential roles in the stem cell biology. In this study, genipin stabilized fibrin microbeads (gFMBs) were prepared through oil emulsion method. Then, sonic hedgehog (SHH) was crosslinked to the surface of gFMBs by using genipin. These gFMBs were designated as gFMB@SHH since SHH was attached to their surface. Moreover, ectomesenchymal stem cells (EMSCs) were cultured, characterized, and used to test gFMB@SHH. Genipin not only changed the color of fibrin microbeads (FMBs) to deep blue, but also stabilized FMBs by delaying their degradation in vitro. In addition to the nontoxic and proliferation promoting effects of gFMB@SHH on EMSCs, gFMBs@SHH could induce neural differentiation of EMSCs by stimulating the SHH/Gli pathway. Therefore, genipin stabilized fibrin microbeads might be a promising structure to construct niches for in vitro stem cell researches.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251344394"},"PeriodicalIF":2.3,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144110931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 3D printed biomimetic composite scaffold based on graphene/gelatin/sodium alginate bioink: Cell proliferation effects and toxicity assessments. 基于石墨烯/明胶/海藻酸钠生物链接的3D打印仿生复合支架:细胞增殖效应和毒性评估。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-05-07 DOI: 10.1177/08853282251341091
Zhenyu Wang, Jiayi Yang, Jun Peng, Jingjing Zhu, Xiangqin Li, Jiang Du, Yuen Yee Cheng, Jie Xu, Fei Song, Zhilin Jia, Kedong Song
{"title":"A 3D printed biomimetic composite scaffold based on graphene/gelatin/sodium alginate bioink: Cell proliferation effects and toxicity assessments.","authors":"Zhenyu Wang, Jiayi Yang, Jun Peng, Jingjing Zhu, Xiangqin Li, Jiang Du, Yuen Yee Cheng, Jie Xu, Fei Song, Zhilin Jia, Kedong Song","doi":"10.1177/08853282251341091","DOIUrl":"https://doi.org/10.1177/08853282251341091","url":null,"abstract":"<p><p>Peripheral nerve injuries are a major global health issue, with current treatments showing significant limitations. Neural tissue engineering provides a promising solution by creating supportive environments for nerve regeneration. This study used advanced 3D bioprinting to produce biomimetic scaffolds from graphene-enhanced bio-inks, integrating cells, scaffold materials, and growth signals. Compared to traditional methods, 3D printing ensures precise material distribution, improving cell density. The bio-ink, made of graphene (Gr), gelatin (Gel), and sodium alginate (SA), was tested at concentrations of 0.02%, 0.08%, and 0.2% to find the best formula for neural repair. Among four scaffold groups (Gel/SA, 0.02% Gr/Gel/SA, 0.08% Gr/Gel/SA, 0.2% Gr/Gel/SA), the 0.08% Gr scaffold showed the best mechanical strength, structural integrity, and biocompatibility. Graphene improved the scaffolds' compressive strength and degradation balance but reduced water absorption, porosity and increased the contact angle at higher concentrations. PC12 cells on the scaffolds showed excellent proliferation and minimal toxicity at lower graphene levels. The 0.08% Gr scaffold was most effective in nerve regeneration, highlighting the potential of graphene-enhanced 3D-printed scaffolds for neural tissue engineering. This research underscores the importance of 3D bioprinting in advancing nerve repair treatments.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251341091"},"PeriodicalIF":2.3,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143965610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
pH-triggered small molecule nanodrugs self-assembled from tryptamine-cinnamaldehyde and fisetin for targeted sepsis-associated encephalopathy therapy. 由色胺-肉桂醛和非瑟酮自组装的ph触发小分子纳米药物用于靶向败血症相关脑病治疗。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-05-01 Epub Date: 2025-02-02 DOI: 10.1177/08853282251318052
Ximing Deng, Jinyao Zhou, Wei Fang, Rao Sun, Guoqing Yan, Yun Sun
{"title":"pH-triggered small molecule nanodrugs self-assembled from tryptamine-cinnamaldehyde and fisetin for targeted sepsis-associated encephalopathy therapy.","authors":"Ximing Deng, Jinyao Zhou, Wei Fang, Rao Sun, Guoqing Yan, Yun Sun","doi":"10.1177/08853282251318052","DOIUrl":"10.1177/08853282251318052","url":null,"abstract":"<p><p>Sepsis-associated encephalopathy (SAE) is an acute diffuse brain dysfunction, but its clinical treatment just focuses on antibiotics and supportive therapy, which fail to directly limit the development of SAE. Herein, this work highlights the development of pH-triggered small molecule nanodrugs self-assembled from tryptamine (Try)-cinnamaldehyde (CA) and fisetin for targeted SAE therapy. The imine linkage in Try-CA and acid-dependent protonation of Try and fisetin endow the nanodrugs with pH-triggered dynamic changes of particle sizes, surficial charges, and drug release. Moreover, the combined use of Try-CA and fisetin also endows the nanodrugs with superior antioxidative, anti-inflammatory and antibacterial capabilities compared to their individual use. These characteristics of the nanodrugs facilitate long-term circulation stability, effective penetration through BBB, selective accumulation in the brain, and target to central and peripheral focal areas, thereby achieving comprehensive treatment or relief of SAE. Thus, these attractive experimental results illuminate the enormous potential of such pH-triggered small molecule nanodrugs for targeted SAE therapy, advancing their use in clinics.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"1165-1176"},"PeriodicalIF":2.3,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143079191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peptides-functionalized gold nanostars enhanced degradation of PD-L1 for improved prostate cancer immunotherapy. 肽功能化金纳米星增强PD-L1降解,改善前列腺癌免疫治疗。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-05-01 Epub Date: 2025-02-24 DOI: 10.1177/08853282251319473
Liangjun Tao, Yifei Zhang, Jingwei Zhang, Jianping Tao, Yu Gong, Jun Mao, Qixing Tian, Ping Ao, Dong Zhuo
{"title":"Peptides-functionalized gold nanostars enhanced degradation of PD-L1 for improved prostate cancer immunotherapy.","authors":"Liangjun Tao, Yifei Zhang, Jingwei Zhang, Jianping Tao, Yu Gong, Jun Mao, Qixing Tian, Ping Ao, Dong Zhuo","doi":"10.1177/08853282251319473","DOIUrl":"10.1177/08853282251319473","url":null,"abstract":"<p><p>Blockage of the interaction between programmed death receptor-1 (PD-1) and programmed death ligand-1 (PD-L1) can restore T-cell activity and enhance antitumor immunity. PD-1/PD-L1 pathway inhibitors have promising applications in the treatment of advanced prostate cancer (PCa). We successfully developed a peptides-functionalized gold nanoconstruct (P-AuNS) consisted of PD-L1-binding peptide (PD-L1pep, P) and gold nanostar (AuNS), which could bind to cell-surface PD-L1 specifically and deliver PD-L1 into PCa cells with high efficiency. In PCa cells, P-AuNS can efficiently degrade PD-L1 in a lysosomal-dependent manner. In the co-culture system of Jurkat cells and DU145 cells, P-AuNS restored the proliferative capacity and interferon-gamma (IFN-γ) secretion level of Jurkat cells inhibited by co-cultured DU145 cells, indicating that P-AuNS effectively hampered the interaction between PD-1 and PD-L1. In addition, in PCa-bearing mice, P-AuNS can effectively inhibit tumor growth and down-regulate PD-L1 protein levels, and in vivo experimental results show that P-AuNS has no systemic toxicity. P-AuNS block the interaction between PD-1 and PD-L1 by efficiently degrading PD-L1, thus restoring the antitumor activity of T cells and inhibiting tumor progression of PCa. In all, P-AuNS has great promise as a potential immunotherapy strategy in the treatment of advanced PCa and even other solid tumors.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"1188-1201"},"PeriodicalIF":2.3,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143492164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High α-lipoic acid-loaded hollow mesoporous prussian blue nanozymes for targeted therapy of nasopharyngeal carcinoma in mice. 高α-硫辛酸负载的中空介孔普鲁士蓝纳米酶靶向治疗小鼠鼻咽癌。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-05-01 Epub Date: 2025-02-05 DOI: 10.1177/08853282251318514
Ya Pan, Xiaofeng Wang, Xuejun Zhou, Haipeng Chen, Yuxia Zou
{"title":"High α-lipoic acid-loaded hollow mesoporous prussian blue nanozymes for targeted therapy of nasopharyngeal carcinoma in mice.","authors":"Ya Pan, Xiaofeng Wang, Xuejun Zhou, Haipeng Chen, Yuxia Zou","doi":"10.1177/08853282251318514","DOIUrl":"10.1177/08853282251318514","url":null,"abstract":"<p><p>This study successfully constructs a tumor-targeting α-lipoic acid-loaded hollow mesoporous prussian blue nanozyme (AHPRzyme) for targeted therapy of nasopharyngeal carcinoma in mice. In these nanozymes, Arg-Gly-Asp (RGD) acts as a targeting ligand, enabling effective targeting of tumor cells. Additionally, AHPRzyme exhibits multiple anti-tumor mechanisms: ① The prussian blue nanozymes in AHPRzyme have catalase (CAT) activity, which decomposes H<sub>2</sub>O<sub>2</sub> in human nasopharyngeal carcinoma CEN2 cells into non-toxic H<sub>2</sub>O, reducing H<sub>2</sub>O<sub>2</sub> levels and minimizing damage to normal cells. The released O<sub>2</sub> helps alleviate the hypoxic environment of the tumor, inhibiting lactate production due to hypoxia and consequently suppressing tumor growth. ② The prussian blue nanozymes also have peroxidase (POD) activity, which catalyzes H<sub>2</sub>O<sub>2</sub> in tumor cells to generate ·OH, a reactive oxygen species, leading to tumor cell apoptosis. ③ The α-lipoic acid structure in AHPRzyme contains disulfide bonds that react with GSH, depleting excess glutathione (GSH) in tumor cells, disrupting the oxidative stress balance within the cells, and making them more sensitive to reactive oxygen species, thereby increasing tumor cell apoptosis. In summary, AHPRzyme can inhibit tumor cell growth and promote tumor cell apoptosis by improving the tumor microenvironment, achieving the goal of anti-nasopharyngeal carcinoma therapy.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"1177-1187"},"PeriodicalIF":2.3,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research progress on intervertebral disc repair strategies and mechanisms based on hydrogel. 基于水凝胶的椎间盘修复策略及机制研究进展。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-05-01 Epub Date: 2025-02-10 DOI: 10.1177/08853282251320227
Zekun Hua, Yinuo Zhao, Meng Zhang, Yanqin Wang, Haoyu Feng, Xiaochun Wei, Xiaogang Wu, Weiyi Chen, Yanru Xue
{"title":"Research progress on intervertebral disc repair strategies and mechanisms based on hydrogel.","authors":"Zekun Hua, Yinuo Zhao, Meng Zhang, Yanqin Wang, Haoyu Feng, Xiaochun Wei, Xiaogang Wu, Weiyi Chen, Yanru Xue","doi":"10.1177/08853282251320227","DOIUrl":"10.1177/08853282251320227","url":null,"abstract":"<p><p>Intervertebral disc degeneration (IDD) arises from a complex interplay of genetic, environmental, and age-related factors, culminating in a spectrum of low back pain (LBP) disorders that exert significant societal and economic impact. The present therapeutic landscape for IDD poses formidable clinical hurdles, necessitating the exploration of innovative treatment modalities. The hydrogel, as a biomaterial, exhibits superior biocompatibility compared to other biomaterials such as bioceramics and bio-metal materials. It also demonstrates mechanical properties closer to those of natural intervertebral discs (IVDs) and favorable biodegradability conducive to IVD regeneration. Therefore, it has emerged as a promising candidate material in the field of regenerative medicine and tissue engineering for treating IDD. Hydrogels have made significant strides in the field of IDD treatment. Particularly, injectable hydrogels not only provide mechanical support but also enable controlled release of bioactive molecules, playing a crucial role in mitigating inflammation and promoting extracellular matrix (ECM) regeneration. Furthermore, the ability of injectable hydrogels to achieve minimally invasive implantation helps minimize tissue damage. This article initially provides a concise exposition of the structure and function of IVD, the progression of IDD, and delineates extant clinical interventions for IDD. Subsequently, it categorizes hydrogels, encapsulates recent advancements in biomaterials and cellular therapies, and delves into the mechanisms through which hydrogels foster disc regeneration. Ultimately, the article deliberates on the prospects and challenges attendant to hydrogel therapy for IDD.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"1121-1142"},"PeriodicalIF":2.3,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信