Journal of Biomaterials Applications最新文献

筛选
英文 中文
Biodegradable implant of magnesium/polylactic acid composite with enhanced antibacterial and anti-inflammatory properties. 具有增强抗菌和消炎特性的镁/聚乳酸复合材料可生物降解植入物。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2024-09-01 Epub Date: 2024-05-30 DOI: 10.1177/08853282241257183
Yuxin Qian, Xianli Wang, Ping Wang, Jin Wu, Yue Shen, Kunzhan Cai, Jing Bai, Mengmeng Lu, Chunbo Tang
{"title":"Biodegradable implant of magnesium/polylactic acid composite with enhanced antibacterial and anti-inflammatory properties.","authors":"Yuxin Qian, Xianli Wang, Ping Wang, Jin Wu, Yue Shen, Kunzhan Cai, Jing Bai, Mengmeng Lu, Chunbo Tang","doi":"10.1177/08853282241257183","DOIUrl":"10.1177/08853282241257183","url":null,"abstract":"<p><p>Addressing fracture-related infections (FRI) and impaired bone healing remains a significant challenge in orthopedics and stomatology. Researchers aim to address this issue by utilizing biodegradable biomaterials, such as magnesium/poly lactic acid (Mg/PLA) composites, to offer antibacterial properties during the degradation of biodegradable implants. Existing Mg/PLA composites often lack sufficient Mg content, hindering their ability to achieve the desired antibacterial effect. Additionally, research on the anti-inflammatory effects of these composites during late-stage degradation is limited. To strengthen mechanical properties, bolster antibacterial efficacy, and enhance anti-inflammatory capabilities during degradation, we incorporated elevated Mg content into PLA to yield Mg/PLA composites. These composites underwent in vitro degradation studies, cellular assays, bacterial tests, and simulation of the PLA degradation microenvironment. 20 wt% and 40 wt% Mg/PLA composites displayed significant antibacterial properties, with three composites exhibiting notable anti-inflammatory effects. In contrast, elevated Mg content detrimentally impacted mechanical properties. The findings suggest that Mg/PLA composites hold promise in augmenting antibacterial and anti-inflammatory attributes within polymers, potentially serving as temporary regenerative materials for treating bone tissue defects complicated by infections.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"165-178"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poloxamer 407 modified collagen/β-tricalcium phosphate scaffold for localized delivery of alendronate. Poloxamer 407 改性胶原蛋白/β-磷酸三钙支架用于阿仑膦酸钠的局部给药。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2024-09-01 Epub Date: 2024-06-06 DOI: 10.1177/08853282241257613
Xuefeng Zhang, Shengli Zhu, Yanqin Liang, Hui Jiang, Zhenduo Cui, Zhaoyang Li
{"title":"Poloxamer 407 modified collagen/β-tricalcium phosphate scaffold for localized delivery of alendronate.","authors":"Xuefeng Zhang, Shengli Zhu, Yanqin Liang, Hui Jiang, Zhenduo Cui, Zhaoyang Li","doi":"10.1177/08853282241257613","DOIUrl":"10.1177/08853282241257613","url":null,"abstract":"<p><p>Systemic administration of alendronate is associated with various adverse reactions in clinical settings. To mitigate these side effects, poloxamer 407 (P-407) modified with cellulose was chosen to encapsulate alendronate. This drug-loaded system was then incorporated into a collagen/β-tricalcium phosphate (β-TCP) scaffold to create a localized drug delivery system. Nuclear magnetic resonance spectrum and rheological studies revealed hydrogen bonding between P-407 and cellulose as well as a competitive interaction with water that contributed to the delayed release of alendronate (ALN). Analysis of the degradation kinetics of P-407 and release kinetics of ALN indicated zero-order kinetics for the former and Fickian or quasi-Fickian diffusion for the latter. The addition of cellulose, particularly carboxymethyl cellulose (CMC), inhibited the degradation of P-407 and prolonged the release of ALN. The scaffold's structure increased the contact area of P-407 with the PBS buffer, thereby, influencing the release rate of ALN. Finally, biocompatibility testing demonstrated that the drug delivery system exhibited favorable cytocompatibility and hemocompatibility. Collectively, these findings suggest that the drug delivery system holds promise for implantation and bone healing applications.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"179-194"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerating healing of infected wounds with G. glabra extract and curcumin Co-loaded electrospun nanofibrous dressing. 使用草苁蓉提取物和姜黄素共载电纺纳米纤维敷料加速感染伤口的愈合。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2024-09-01 Epub Date: 2024-06-05 DOI: 10.1177/08853282241252729
Maryam Doostan, Hassan Maleki, Kamyar Khoshnevisan, Hadi Baharifar, Mahtab Doostan, Sonia Bahrami
{"title":"Accelerating healing of infected wounds with <i>G. glabra</i> extract and curcumin Co-loaded electrospun nanofibrous dressing.","authors":"Maryam Doostan, Hassan Maleki, Kamyar Khoshnevisan, Hadi Baharifar, Mahtab Doostan, Sonia Bahrami","doi":"10.1177/08853282241252729","DOIUrl":"10.1177/08853282241252729","url":null,"abstract":"<p><p>This study aimed to construct a nanofibrous wound dressing composed of polyvinyl alcohol (PVA) and chitosan (CS) containing curcumin and <i>Glycyrrhiza glabra</i> root extract to inhibit infection and accelerate wound healing. Loading 10 wt% of <i>G. glabra</i> extract-curcumin (50:50) by electrospinng technique resulted in the formation of nanofibers (NFs) with diameter distribution 303 ± 38 and had a uniform and defect-free morphology. FTIR analysis confirmed the loading of the components without adverse interactions. Also, the results showed extremely high porosity, extraordinary liquid absorption capacity, and complete wettability. In addition, <i>G. glabra</i> extract-curcumin showed significant antioxidant activity and their release profile from NFs was continuous and sustained. Also, the prepared NF could inhibit the growth of both Gram-positive <i>Saureus</i> and Gram-negative <i>E. coli</i> strains. Wound healing evaluation in the infected animal model showed that the NFs caused full wound closure and accelerated skin regeneration. The studies on inhibiting the bacteria growth at the wound site also revealed complete inhibitory effects. Moreover, histopathology studies confirmed the complete regeneration of skin layers, formation of collagen fibers, and angiogenesis. Finally, PVA/CS NFs containing <i>G. glabra</i> extract-curcumin as a multifunctional bioactive wound dressing presented a promising approach for promoting the healing of infected wounds.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"249-265"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated organosilica nanomedicine enables sonoimaging, sonochemistry and antitumor sonodynamic therapy. 集成的有机硅纳米医学可实现声成像、声化学和抗肿瘤声动力疗法。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2024-09-01 Epub Date: 2024-05-31 DOI: 10.1177/08853282241258555
Xiaoming Wen, Jingke Fu, Yue Tian, Jianyong Gao, Yingchun Zhu
{"title":"Integrated organosilica nanomedicine enables sonoimaging, sonochemistry and antitumor sonodynamic therapy.","authors":"Xiaoming Wen, Jingke Fu, Yue Tian, Jianyong Gao, Yingchun Zhu","doi":"10.1177/08853282241258555","DOIUrl":"10.1177/08853282241258555","url":null,"abstract":"<p><p>Sonography with its non-invasive and deep tissue-penetrating characteristics, not only contributes to promising developments in clinical disease diagnosis but also obtains acknowledgments as a prospective therapeutic approach in the field of tumor treatment. However, it remains a challenge for sonography simultaneously to achieve efficient imaging and therapeutic functionality. Here, we present an innovative integrated diagnosis and treatment paradigm by developing the nanomedicine of percarbamide-bromide-mesoporous organosilica spheres (MOS) with RGD peptide modification (PBMR) by loading percarbamide and bromide in MOS which were prepared by a one-step O/W microemulsion method. The PBMR nanomedicine effectively modifies the tumor acoustic environment to improve sonoimaging efficacy and induces sonochemical reactions to enhance the production of reactive oxygen species (ROS) for tumor treatment efficiency under sonography. The combination of PBMR nanomedicine and SDT achieved multiple ROS generation through the controlled sonochemical reactions and significantly boosted the potency of sonodynamic therapy and induced significant tumor regression with non-invasive tissue penetrability and minimizing damage to healthy tissues. Simultaneously, the generation of oxygen gas in the sonochemical process augments ultrasound reflection, resulting in a 4.9-fold increase in imaging grayscale. Our research establishes an effective platform for the synergistic integration of sonoimaging and sonodynamic antitumor therapy, offering a novel approach for precise antitumor treatment in the potential clinical applications.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"235-248"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141183714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel poly(lactic-co-glycolic acid) nanoliposome-encapsulated diclofenac sodium and celecoxib enable long-lasting synergistic treatment of osteoarthritis. 新型聚(乳酸-共聚乙醇酸)纳米脂质体包裹双氯芬酸钠和塞来昔布,可实现骨关节炎的长效协同治疗。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2024-09-01 Epub Date: 2024-05-31 DOI: 10.1177/08853282241258311
Bo Chu, Dagui Chen, Senlin Ma, Yong Yang, Fusheng Shang, Wei Lv, Yinghua Li
{"title":"Novel poly(lactic-co-glycolic acid) nanoliposome-encapsulated diclofenac sodium and celecoxib enable long-lasting synergistic treatment of osteoarthritis.","authors":"Bo Chu, Dagui Chen, Senlin Ma, Yong Yang, Fusheng Shang, Wei Lv, Yinghua Li","doi":"10.1177/08853282241258311","DOIUrl":"10.1177/08853282241258311","url":null,"abstract":"<p><strong>Background: </strong>Diclofenac sodium (DS) and celecoxib (CEL) are primary anti-inflammatory agents used in the treatment of osteoarthritis (OA). Formulating these drugs into extended-release versions can effectively address the issue of multiple daily doses. In this study, we designed and synthesized a novel poly(lactic-co-glycolic acid) (PLGA) nanoliposome as a dual-drug delivery sustained-release formulation (PPLs-DS-CEL) to achieve long-lasting synergistic treatment of OA with both DS and CEL.</p><p><strong>Methods: </strong>PPLs-DS-CEL was synthesized by the reverse evaporation method and evaluated for its physicochemical properties, encapsulation efficiency, drug release kinetics and biological properties. A rat OA model was established to assess the therapeutic efficacy and biosafety of PPLs-DS-CEL.</p><p><strong>Results: </strong>The particle size of PPLs-DS-CEL was 218.36 ± 6.27 nm, with a potential of 32.56 ± 3.28 mv, indicating a homogeneous vesicle size. The encapsulation of DS and CEL by PPLs-DS-CEL was 95.18 ± 4.43% and 93.63 ± 5.11%, with drug loading of 9.56 ± 0.32% and 9.68 ± 0.34%, respectively. PPLs-DS-CEL exhibited low cytotoxicity and hemolysis, and was able to achieve long-lasting synergistic analgesic and anti-inflammatory therapeutic effects in OA through slow release of DS and CEL, demonstrating good biosafety properties.</p><p><strong>Conclusion: </strong>This study developed a novel sustained-release nanoliposomes formulation capable of co-loading two drugs for the long-acting synergistic treatment of OA. It offers a new and effective therapeutic strategy for OA treatment in the clinic settings and presents a promising approach for drug delivery systems.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"221-234"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141183747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative study of iodine-doped and undoped pyrrole grafting with plasma on poly (glycerol sebacate) scaffolds and its human dental pulp stem cells compatibility. 等离子体在聚(甘油癸二酸酯)支架上掺碘和不掺碘吡咯接枝及其与人牙髓干细胞相容性的比较研究。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2024-09-01 Epub Date: 2024-05-31 DOI: 10.1177/08853282241258304
Fernando Hernández-Sánchez, Nayeli Rodríguez-Fuentes, Julio César Sánchez-Pech, Alejandro Ávila-Ortega, Hugo Joel Carrillo-Escalante, William Alejandro Talavera-Pech, Gaspar Eduardo Martín-Pat
{"title":"Comparative study of iodine-doped and undoped pyrrole grafting with plasma on poly (glycerol sebacate) scaffolds and its human dental pulp stem cells compatibility.","authors":"Fernando Hernández-Sánchez, Nayeli Rodríguez-Fuentes, Julio César Sánchez-Pech, Alejandro Ávila-Ortega, Hugo Joel Carrillo-Escalante, William Alejandro Talavera-Pech, Gaspar Eduardo Martín-Pat","doi":"10.1177/08853282241258304","DOIUrl":"10.1177/08853282241258304","url":null,"abstract":"<p><p>This study addresses the morphological and chemical characterization of PGS scaffolds after (6, 12, 18, 24, and 30 min) residence in undoped pyrrole plasma (PGS-PPy) and the evaluation of cell viability with human dental pulp stem cells (hDPSCs). The results were compared with a previous study that used iodine-doped pyrrole (PGS-PPy/I). Analyses through SEM and AFM revealed alterations in the topography and quantity of deposited PPy particles. FTIR spectra of PGS-PPy scaffolds confirmed the presence of characteristic absorption peaks of PPy, with higher intensities observed in the nitrile and -C≡C- groups compared to PGS-PPy/I scaffolds, while raman spectra indicated a lower presence of polaron N<sup>+</sup> groups. On the other hand, PGS scaffolds modified with PPy exhibited lower cytotoxicity compared to PGS-PPy/I scaffolds, as evidenced by the Live/Dead assay. Furthermore, the PGS-PPy scaffolds at 6 and 12 min, and particularly the PGS-PPy/I scaffold at 6 min, showed the best results in terms of cell viability by the fifth day of culture. The findings of this study suggest that undoped pyrrole plasma modification for short durations could also be a viable option to enhance the interaction with hDPSCs, especially when the treatment times range between 6 min and 12 min.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"207-220"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141183704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poly (β-amino esters)/Mobil Composition of Matter 41-mediated delivery of siIL-1β alleviates deep vein thrombosis in rat hind limbs. 聚(β-氨基酯)/美孚物质组分 41 介导的 siIL-1β 递送可缓解大鼠后肢深静脉血栓形成。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2024-08-30 DOI: 10.1177/08853282241280376
Bingru Zheng, Jinjie Chen, Yizhou Xu, Wanrui Wu, Yu Zhu, Wei Cai, Weili Lin, Changsheng Shi
{"title":"Poly (β-amino esters)/Mobil Composition of Matter 41-mediated delivery of siIL-1β alleviates deep vein thrombosis in rat hind limbs.","authors":"Bingru Zheng, Jinjie Chen, Yizhou Xu, Wanrui Wu, Yu Zhu, Wei Cai, Weili Lin, Changsheng Shi","doi":"10.1177/08853282241280376","DOIUrl":"https://doi.org/10.1177/08853282241280376","url":null,"abstract":"<p><p><b>Introduction:</b> Deep vein thrombosis (DVT) is a major cause of cardiovascular disease-related deaths worldwide and is considered a thrombotic inflammatory disorder. IL-1β, as a key promoter of venous thrombus inflammation, is a potential target for DVT treatment. Constructing a nanocarrier system for intracellular delivery of siIL-1β to silence IL-1β may be an effective strategy for alleviating DVT. <b>Methods:</b> ELISA was used to detect the expression levels of IL-1β and t-PA in the serum of DVT patients and healthy individuals. In vitro, HUVEC cells were treated with IL-1β, and changes in VWF and t-PA expression levels were assessed. PBAE/MCM-41@siIL-1β (PM@siIL-1β) nano-complexes were synthesized, the characterization and biocompatibility of PM@siIL-1β were evaluated. A rat hind limb DVT model was established, and PM@siIL-1β was used to treat DVT rats. Morphology of the inferior vena cava, endothelial cell count, IL-1β, vWF, and t-PA levels, as well as changes in the p38 MAPK and NF-κB pathways, were examined in the different groups. <b>Results:</b> IL-1β and t-PA were highly expressed in DVT patients, and IL-1β treatment induced a decrease in VWF levels and an increase in t-PA levels in HUVEC cells. The synthesized PM@siIL-1β exhibited spherical shape, good stability, high encapsulation efficiency, and high drug loading capacity, with excellent biocompatibility. In the DVT model rats, the inferior vena cava was filled with blood clots, endothelial cells increased, IL-1β and VWF levels significantly increased, while t-PA levels were significantly downregulated. Treatment with PM@siIL-1β resulted in reduced thrombus formation, decreased endothelial cell count, and reversal of IL-1β, VWF, and t-PA levels. Furthermore, PM@siIL-1β treatment significantly inhibited p38 phosphorylation and upregulation of NF-κB expression in the DVT model group. <b>Conclusion:</b> IL-1β can be considered a therapeutic target for suppressing DVT inflammation. The synthesized PM@siIL-1β achieved efficient delivery and gene silencing of siIL-1β, demonstrating good therapeutic effects on rat hind limb DVT, including anti-thrombotic and anti-inflammatory effects, potentially mediated through the p38 MAPK and NF-κB pathways.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241280376"},"PeriodicalIF":2.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Injectable nanogels to improve triamcinolone acetonide delivery and toxicity on the treatment of eye diseases. 注射用纳米凝胶,用于改善曲安奈德醋酸泼尼松的输送和治疗眼疾的毒性。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2024-08-29 DOI: 10.1177/08853282241277345
Ebru Erdal
{"title":"Injectable nanogels to improve triamcinolone acetonide delivery and toxicity on the treatment of eye diseases.","authors":"Ebru Erdal","doi":"10.1177/08853282241277345","DOIUrl":"https://doi.org/10.1177/08853282241277345","url":null,"abstract":"<p><p>Triamcinolone acetonide (TA) is a corticosteroid, and widely used in the treatment of eye diseases such as macular edema, proliferative vitreoretinopathy, and chronic uveitis. It's also used in diseases such as osteoarthritis and rheumatoid arthritis. Despite the width of its usage, it has toxicity in the eye. Nanogels are advantageous in applying toxic and low bioavailability drugs thanks to their swelling ability and stability. In the presented study, to minimize the disadvantages of TA, and to reach the drug into the back segment of the eye, TA-loaded chitosan (CS) nanogel (CS-TA Nanogel) has been prepared, and in vitro characterized. CS-TA nanogels were prepared by ionic gelation and characterized by SEM, FTIR, and TGA. Drug release profile, and in vitro cytotoxicity was determined to evaluate the efficacy of nanogels for intravitreal eye applications. DNA damage, and oxidative stress caused by nanogels in eye endothelial cells were investigated. CS and CS-TA nanogels were synthesized in the sizes range 200-300 nm with an overall positive charge surface. The loading efficiency of TA on nanogels was determined as 50%. Cells exposed to 250 µg/ml free TA showed 74% viability, while this rate was 90% in cells exposed to CS-TA nanogels. 8-OHdG levels were determined as 54.93 ± 1.118 ng/mL in control cells and 92.47 ± 0.852 ng/mL in cells exposed to 250 µg/ml TA. TA both induces oxidative stress and causes DNA damage in HRMEC cells. However, administration of TA with carrier increased cell viability, total antioxidant capacity, and reduced oxidative DNA damage.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241277345"},"PeriodicalIF":2.3,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic effect of oxidized bletilla striata polysaccharide-natamycin eye drops on fungal keratitis. 氧化紫苏多糖-纳他霉素滴眼液对真菌性角膜炎的治疗效果。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2024-08-29 DOI: 10.1177/08853282241280844
Xue Tian, Xiaoyue Ji, Ranran Zhang, Xiaojing Long, Jing Lin, Yingxue Zhang, Lu Zhan, Junjie Luan, Guiqiu Zhao, Xudong Peng
{"title":"Therapeutic effect of oxidized bletilla striata polysaccharide-natamycin eye drops on fungal keratitis.","authors":"Xue Tian, Xiaoyue Ji, Ranran Zhang, Xiaojing Long, Jing Lin, Yingxue Zhang, Lu Zhan, Junjie Luan, Guiqiu Zhao, Xudong Peng","doi":"10.1177/08853282241280844","DOIUrl":"https://doi.org/10.1177/08853282241280844","url":null,"abstract":"<p><strong>Objective: </strong>Fungal keratitis (FK) usually develops to a poor clinical prognosis due to the fungal invasion and excessive inflammatory reaction. In order to enhance the therapeutic effect of natamycin (NAT), we used the anti-inflammatory biological polysaccharide bletilla striata polysaccharide (BSP) combined with NAT to prepare a new eye drop -- oxidized bletilla striata polysaccharide-natamycin (OBN).</p><p><strong>Methods: </strong>UV-vis, FT-IR, and fluorescence spectroscopy were used to identify the synthesis of OBN. Biocompatibility of OBN was determined by CCK-8, scratch assay, and corneal toxicity test. RAW264.7 cells and C57BL/6 mice were stimulated with <i>A. fumigatus</i> and treated with PBS, OBN, or NAT. The anti-inflammatory activity of OBN was detected by RT-PCR and ELISA. In mice with FK, the clinical scores were used to evaluate the effect of OBN; HE staining was performed to assess the corneal pathological changes; MPO assay and immunofluorescence staining were used to investigate neutrophil infiltration.</p><p><strong>Results: </strong>OBN was synthesized by combining oxidized bletilla striata polysaccharide (OBSP) with NAT through Schiff base reaction. OBN did not affect cell viability at a concentration of 160 μg/mL in HCECs, RAW264.7 cells, and mouse corneas. OBN versus NAT significantly improved the prognosis of <i>A. fumigatus</i> keratitis by reducing disease severity, neutrophil infiltration, and expression of inflammatory factors <i>in vivo</i>. Additionally, OBN treatment down-regulated the mRNA and protein expression levels of inflammatory factors IL-1β, TNF-α, and IL-6 in RAW264.7 and mouse models.</p><p><strong>Conclusion: </strong>OBN is a compound prepared by covalently linking OBSP to the imino group of NAT through Schiff base reaction. OBN treatment down-regulated inflammation and improved the prognosis of mice with <i>A. fumigatus</i> keratitis.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241280844"},"PeriodicalIF":2.3,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of bioresorbable calcium phosphate cement with high porosity via the addition of bioresorbable polymers. 通过添加生物可吸收聚合物,设计具有高孔隙率的生物可吸收磷酸钙水泥。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2024-08-29 DOI: 10.1177/08853282241277477
Masanobu Kamitakahara, Kakeru Kato, Masaki Umetsu, Kumiko Yoshihara, Yasuhiro Yoshida
{"title":"Design of bioresorbable calcium phosphate cement with high porosity via the addition of bioresorbable polymers.","authors":"Masanobu Kamitakahara, Kakeru Kato, Masaki Umetsu, Kumiko Yoshihara, Yasuhiro Yoshida","doi":"10.1177/08853282241277477","DOIUrl":"https://doi.org/10.1177/08853282241277477","url":null,"abstract":"<p><p>Novel calcium phosphate cements (CPCs) that can be resorbed into the human body need to be developed. One approach for improving bioresorbability is reducing the content of calcium phosphate in CPCs; however, this may induces difficulties in setting the cement and increases the risk of decay. Adding bioresorbable polymers to a liquid solution can shorten the setting time and inhibit decay during setting. A novel bioresorbable polymer, phosphorylated pullulan (PPL), was recently reported. The effect of adding PPL to α-tricalcium phosphate (α-TCP)-based CPCs was examined and compared to that of adding bioresorbable polymers such as collagen, chitosan, and alginate. Collagen did not significantly inhibit the conversion of α-TCP to hydroxyapatite (HA), and its combination with calcium phosphate decreased the setting time and suppressed decay; chitosan decreased the setting time when combined with calcium phosphate; and alginate inhibited the conversion of α-TCP to HA and contributed to suppressing the decay. In contrast, PPL slightly inhibited the conversion of α-TCP to HA; however, its combination with calcium phosphate decreased the setting time. Thus, selecting bioresorbable polymers can help effectively control the properties of CPCs.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241277477"},"PeriodicalIF":2.3,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信