Chao Zhong, Xiufeng Zhang, Yanfang Sun, Zhong Shen, Yanan Mao, Tianqi Liu, Rui Wang, Lei Nie, Amin Shavandi, Khaydar E Yunusov, Guohua Jiang
{"title":"Rizatriptan benzoate-loaded dissolving microneedle patch for management of acute migraine therapy.","authors":"Chao Zhong, Xiufeng Zhang, Yanfang Sun, Zhong Shen, Yanan Mao, Tianqi Liu, Rui Wang, Lei Nie, Amin Shavandi, Khaydar E Yunusov, Guohua Jiang","doi":"10.1177/08853282241237323","DOIUrl":"10.1177/08853282241237323","url":null,"abstract":"<p><p>In this study, dissolving microneedles (MNs) using polyvinyl alcohol (PVA) and poly (1-vinylpyrrolidone-co-vinyl acetate) (P(VP-co-VA)) as matrix materials were developed for transdermal delivery of rizatriptan benzoate (RB) for acute migraine treatment. <i>In-vitro</i> permeation studies were conducted to assess the feasibility of the as-fabricated dissolving MNs to release RB. Drug skin penetration were tested by Franz diffusion cells, showing an increase of the transdermal flux compared to passive diffusion due to the as-fabricated dissolving MNs having a sufficient mechanical strength to penetrate the skin and form microchannels. The pharmacological study <i>in vivo</i> showed that RB-loaded dissolving MNs significantly alleviated migraine-related response by up-regulating the level of 5-hydroxytryptamine (5-HT) and down-regulating the levels of calcitonin gene-related peptide (CGRP) and substance P (SP). In conclusion, the RB-loaded dissolving MNs have advantages of safety, convenience, and high efficacy over conventional administrations, laying a foundation for the transdermal drug delivery system treatment for acute migraine.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"989-999"},"PeriodicalIF":2.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancements in self-assembling peptides: Bridging gaps in 3D cell culture and electronic device fabrication","authors":"Azadeh Jafari","doi":"10.1177/08853282241240139","DOIUrl":"https://doi.org/10.1177/08853282241240139","url":null,"abstract":"Self-assembling peptides (SAPs) show promise in creating synthetic microenvironments that regulate cellular function and tissue repair. Also, the precise π-π interactions and hydrogen bonding within self-assembled peptide structures enable the creation of quantum confined structures, leading to reduced band gaps and the emergence of semiconductor properties within the superstructures. This review emphasizes the need for standardized 3D cell culture methods and electronic devices based on SAPs for monitoring cell communication and controlling cell surface morphology. Additionally, the gap in understanding the relationship between SAP peptide sequences and nanostructures is highlighted, underscoring the importance of optimizing peptide deposition parameters, which affect charge transport and bioactivity due to varying morphologies. The potential of peptide nanofibers as extracellular matrix mimics and the introduction of the zone casting method for improved film deposition are discussed within this review, aiming to bridge knowledge gaps and offer insights into fields like tissue engineering and materials science, with the potential for groundbreaking applications at the interface of biology and materials engineering.","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":"16 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140169674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Silver nanoparticle reinforced polylactic acid and gelatin composite films for advanced wound dressing.","authors":"Yeasmin Akter, Md Minhajul Islam, Md Shamim Akter, Khodeja Afrin, Md Saiful Alam, Papia Haque, Newaz Mohammed Bahadur","doi":"10.1177/08853282241233720","DOIUrl":"10.1177/08853282241233720","url":null,"abstract":"<p><p>Multifunctional and biodegradable dressings with high mechanical strength and good antibacterial activity are crucial in fundamental health services. This study was initiated to prepare a novel curative wound dressing film consisting of natural biodegradable gelatin (G) and polylactic acid (PLA) with silver nanoparticles (AgNPs) where glutaraldehyde (GA) was used as compatibilizer. The prepared composite films addressed the poor thermal and biological stability of G and the limited fluid retention capacity of PLA. Silver nanoparticles were prepared by basic chemical reduction and reinforced on polymer films using simple solvent casting, which obviated common clinical infections and accelerated wound closure rate (<i>p</i> < .05). Fourier transform infrared (FTIR) studies confirmed composite formation through H-bonding and X-ray diffraction (XRD) revealed increased crystallinity due to incorporating AgNPs. Films with G, PLA & GA (50:50:5 by volume) introduced the best elasticity & strength with excellent fluid retention properties (<i>p</i> < .05). Scanning electron microscopy (SEM) images unfolded surface morphology and presence of agglomerated AgNPs on film surfaces. Prepared films exhibited significant antimicrobial efficacy against <i>Staphylococcus aureus</i> and <i>Pseudomonas</i> sp. and showed excellent cell viability (>97 %) in Vero cell line. Finally, an in vivo mouse model study showed 99.7 % contraction (<i>p</i> < .05) within 12 days, which was most effectual and 12 % faster than conventional gauge bandages. These results demonstrated the promising and cost-effective potential of the prepared film for wound healing.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"915-931"},"PeriodicalIF":2.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139722718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ThermOxshield ion pair self assembly unleashing suppressed release.","authors":"Yuyuan Guo, Jomon George Joy, Jin-Chul Kim","doi":"10.1177/08853282241230483","DOIUrl":"10.1177/08853282241230483","url":null,"abstract":"<p><p>Poly (acrylic acid) (PAA), an anionic polymer was used to prepare ion pair self-assembly (IPSAM) with 4-(methylthio)aniline (MTA), a hydrophobic counter ion, which is responsive to temperature and oxidation. The IPSAM was formed when the carboxylic to amino group molar ratio was 7/3-5/5. The structure of the IPSAM nanoparticle was spherical whose diameter was 30-40 nm on the TEM images. The PAA/MTA ion pair showed the upper critical solution temperature (UCST) that hiked with increasing MTA content. When the MTA of the ion pair was oxidized by H<sub>2</sub>O<sub>2,</sub> the UCST was also increased. The amphiphilic property of the ion pair was responsible for interface activity which declined upon the oxidation of the MTA. The surface tension was low for the ratio of PAA/MTA (5/5), which made the 5/5 ratio suitable for further studies. The interaction between PAA and MTA, which was ionic, and the oxidation of MTA was confirmed by FT-IR spectroscopy. The release of payload (i.e. Nile red) in IPSAM was restrained below the UCST but it was triggered above the phase transition temperature possibly due to the disintegration of the IPSAM whereas on MTA oxidation the release was shielded due to more hydrophobicity. The release was found to be higher in tumor environment temperature which could be controlled with the input concentration of H<sub>2</sub>O<sub>2</sub> giving a stable IPSAM. The cell viability results showed that IPSAM has no significant cytotoxicity and can serve as a drug carrier for stimulus-response.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"890-904"},"PeriodicalIF":2.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhichao Liu, Yulun Nie, Shuo Wang, Chengliang Sun, Yao Cai, Sheng Liu
{"title":"A cancer cell nanotherapy method based on GHz film bulk acoustic resonator and nanoscale CaO<sub>2</sub>.","authors":"Zhichao Liu, Yulun Nie, Shuo Wang, Chengliang Sun, Yao Cai, Sheng Liu","doi":"10.1177/08853282241229888","DOIUrl":"10.1177/08853282241229888","url":null,"abstract":"<p><p>Sonodynamic therapy (SDT) is an emerging cancer treatment method in recent years. However, the ultrasound signal utilized for SDT is usually located at a low-frequency spectrum (<2 MHz), and in the field of SDT research, few studies have focused on the exploration and development of ultrasound frequency. Studies have shown that the GHz-level ultrasound can increase cell membrane permeability and have a negligible effect on cell vitality. Herein, we reported the study of a GHz thin film bulk acoustic resonator as an ultrasound source for synergistic treatment with nanoscale calcium peroxide (CaO<sub>2</sub>). It was discovered that this ultrasound source ultimately achieved an efficient therapeutic outcome on mouse breast cancer cell line 4T1. Such GHz-level ultrasound application in SDT is of high significance to broaden the cognition and application scope of SDT.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"932-939"},"PeriodicalIF":2.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Alginate microspheres encapsulating hox transcript antisense RNA siRNA regulate the Hedgehog-Gli1 pathway to alleviate epidermal growth factor receptor tyrosine kinase inhibitors resistance.","authors":"Guojie Lu, Huiling Zhong, Jianwei Gao, Yaosen Zhang","doi":"10.1177/08853282241228667","DOIUrl":"10.1177/08853282241228667","url":null,"abstract":"<p><p>The long non-coding RNA HOTAIR and the Hedgehog-Gli1 signaling pathway are closely associated with tumor occurrence and drug resistance in various cancers. However, their specific roles in the development of EGFR-TKIs resistance in non-small cell carcinoma remain unclear. To address the issue of EGFR-TKIs resistance, this study utilized the electrospray method to prepare sodium alginate microspheres encapsulating HOTAIR siRNA (SA/HOTAIR siRNA) and investigated its effects on RNA interference (RNAi) in the gefitinib-resistant cell line PC9/GR. Furthermore, the study explored whether HOTAIR could modulate EGFR-TKIs resistance through the Hedgehog-GLi1 signaling pathway. The experimental results showed that sodium alginate (SA) microspheres demonstrated excellent biocompatibility with high encapsulation efficiency and drug-loading capacity, effectively enhancing the silencing efficiency of siRNA. HOTAIR siRNA significantly inhibited the proliferation, migration, and invasion abilities of PC9/GR cells while promoting apoptosis. Additionally, HOTAIR siRNA effectively suppressed tumor growth and downregulated the Hedgehog-GLi1 pathway and anti-apoptotic proteins, which were confirmed in animal experiments. Moreover, SA/HOTAIR siRNA exhibited superior inhibition of cellular and tumor functions compared to using HOTAIR siRNA alone. Clinical research findings indicated that monitoring the expression level of HOTAIR in the serum and urine samples of NSCLC patients before and after receiving EGFR-TKIs treatment can predict the efficacy of EGFR-TKIs to a certain extent. This study provided evidence that HOTAIR siRNA effectively mitigated the development of acquired resistance to EGFR-TKIs by inhibiting the Hedgehog-GLi1 pathway. Furthermore, it introduced a reliable and long-lasting drug delivery system for combating acquired resistance to EGFR-TKIs.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"877-889"},"PeriodicalIF":2.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139542520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G Hauschild, J Hardes, M Dudda, A Streitbürger, M Wahrenburg
{"title":"Impact of topography and added TiN-coating on adult human dermal fibroblasts after seeding on titanium surface in-vitro.","authors":"G Hauschild, J Hardes, M Dudda, A Streitbürger, M Wahrenburg","doi":"10.1177/08853282241233194","DOIUrl":"10.1177/08853282241233194","url":null,"abstract":"<p><p>Complications of transcutaneous osseointegrated prosthetic systems (TOPS) focus on the metal-cutaneous interface at the stoma. Besides pain due to scare tissue as well as undefined neuropathic disorders, there is high evidence that the stoma presents the main risk causing hypergranulation and ascending infection. To restore the cutaneous barrier function in this functional area, soft-tissue on- or in-growth providing a vital and mechanically stable bio-artificial conjunction is considered a promising approach. In this study we assessed viability and proliferation of adult human dermal fibroblasts (HDFa) on modifications of a standard prosthetic titanium surface. Un-coated (TiAl6V4) as well as a titanium-nitrite (TiN) coated additive manufactured porous three-dimensional surface structures (EPORE®) were seeded with HDFa and compared to plain TiAl6V4 and polystyrene surfaces as control. Cell viability and proliferation were assessed at 24 h and 7 days after seeding with a fluorescence-based live-dead assay. Adhesion and cell morphology were analyzed by scanning electron microscopy at the respective measurements. Both EPORE® surface specifications revealed a homogenous cell distribution with flat and spread cell morphology forming filopodia at both measurements. Proliferation and trend to confluence was seen on un-coated EPORE® surfaces with ongoing incubation but appeared substantially lower on the TiN-coated EPORE® specification. While cell viability on both EPORE® specifications was comparable to plain TiAL6V4 and polystyrene controls, cell proliferation and confluence were less pronounced when compared to controls. The EPORE® topography allows for fibroblast adhesion and viability in both standard TiAl6V4 and - to a minor degree - TiN-coated specifications as a proof of principle.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"905-914"},"PeriodicalIF":2.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10893772/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139735245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chengyi Huang, Haiyan Wang, Lili Yao, Li Li, Weiwei Lou, Litao Yao, Yitian Shi, Renren Li
{"title":"Fabrication and evaluation of silver modified micro/nano structured titanium implant.","authors":"Chengyi Huang, Haiyan Wang, Lili Yao, Li Li, Weiwei Lou, Litao Yao, Yitian Shi, Renren Li","doi":"10.1177/08853282231222590","DOIUrl":"10.1177/08853282231222590","url":null,"abstract":"<p><p>In order to enhance the antibacterial property of titanium implant without inducing obvious cytotoxicity, the combination of Ag nanolayer and micro/nano surface structure was conducted by magnetron sputtering and hot-alkali treatment in this study. A series of specimens (AH-Ti, AH-Ti/Ag0.25, AH-Ti/Ag1, AH-Ti/Ag2, and AH-Ti/Ag5) were prepared with different sputtering durations (0 min, 0.25 min, 1 min, 2 min, 5 min), respectively, all realizing long-term release of Ag+. In vitro experiments indicated that AH-Ti/Ag1 group possessed good cytocompatibility, nice osteogenic ability, and excellent antibacterial efficiency as well. In addition, AH-Ti/Ag0.25 showed good biocompatibility, while the reduction of <i>S.aureus</i> (78.5%) was not enough compared with AH-Ti/Ag1. Although the AH-Ti/Ag2 and AH-Ti/Ag5 group showed superior antibacterial activity, their obvious cytotoxicity caused low ALP and mineralization level. Therefore, the design of suitable Ag nanolayer coating combined with micro/nano surface structure (AH-Ti/Ag1) might be a promising strategy to enhance osteogenic property and maintain excellent antibacterial ability at the same time.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"848-857"},"PeriodicalIF":2.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139546107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating temperature variability on antioxidative behavior of synthesized cerium oxide nanoparticle for potential biomedical application.","authors":"Shivam Pandey, Sneha Kumari, Leela Manohar Aeshala, Sushant Singh","doi":"10.1177/08853282231226037","DOIUrl":"10.1177/08853282231226037","url":null,"abstract":"<p><p>Cerium oxide nanoparticles (CNP) have garnered significant attention due to their versatile redox properties and wound-healing applications. The antioxidative nature of CNP is due to its ability to be oxidized and reduced, followed by the capture or release of oxygen which is used for scavenging reactive oxygen species (ROS). Herein, CNP is produced through a wet chemistry approach and its tunable redox property is tested across a range of temperatures. The synthesized CNP was observed to reveal the signature peak at 245 nm indicating a high Ce<sup>+3</sup>/Ce<sup>+4</sup> ratio. Towards evaluating the redox antioxidative behavior, CNPs were subjected to a comprehensive analysis for superoxide dismutase mimetic analysis with riboflavin-mediated nitroblue tetrazolium scavenging assay. The results demonstrated that the redox activity of cerium oxide nanoparticles was strongly influenced by the different temperature ranges. Superoxide dismutase mimetic activity was observed to be reduced with a decrease in temperature as we moved from 4°C (80% activity) to -80°C (47% activity) at 1 mM conc of CNP. Similarly, the SOD mimetic activity increased with an increase in temperature from 40°C (72% activity) to 70°C (94% activity). Further, CNP was found to inhibit <i>E. coli</i> (gram+ve) and <i>Enterobacter</i> (gram-ve) beyond 70% simultaneously at 1 mM conc, indicating its potential application as a remarkable antimicrobial agent. CNP also inhibited the alpha-amylase activity up to the 60% at 1 mM conc suggesting its potential application in antidiabetic wound healing therapy. Overall, the CNP finds its application in mitigating the oxidative stress-related disorder exhibited by its high antioxidative, antimicrobial, and antidiabetic behavior.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"866-874"},"PeriodicalIF":2.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139086965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation of berberine hydrochloride-Ag nanoparticle composite antibacterial dressing based on 3D printing technology.","authors":"Chen Chen, Maomei Xie, Yueling Yan, Yongyuan Li, Zhiyao Li, Tong Zhang, Zanyan Gao, Liyi Deng, Haixia Wang","doi":"10.1177/08853282231222191","DOIUrl":"10.1177/08853282231222191","url":null,"abstract":"<p><p>In recent years, Ag nanoparticle (Ag NP)-loaded antibacterial dressings have attracted much attention in high-level medical dressings. However, the high cytotoxicity of Ag NP has always been a problem. In this paper, we examined the improvement of antibacterial activity of berberine hydrochloride (BBR) with Ag NP, the results showed that the combined use of BBR and Ag NP can effectively reduce the dosage of Ag NP while ensuring the inhibition of bacterial growth, thus an intermediate layer dressing containing combined drugs were prepared. At the same time, the top dressing of polyvinyl alcohol (PVA) solid film and the PVA bottom dressings with three kinds of leakage structures were prepared by 3D printing technology. Three kinds of PVA bottom dressings showed high quality consistency, and the greater the number of leak holes, the higher the porosity value of the dressing, while the swelling ratio value of the bottom layer dressing with three holes was the lowest. Finally, three types of BBR-Ag NP composite antibacterial dressings (3D-BBR-Ag NP) can be obtained by self-assembling of the top dressing, the intermediate layer dressing, and the bottom dressings with three kinds of leakage structures. The cumulative drug release results showed that dressing with more holes had a faster drug release rate compared to the other two ones with fewer leakage holes. Besides, five drug release kinetic models were used to investigate the cumulative BBR release profiles for three types of 3D-BBR-Ag NP. And the three types of composite dressings showed strong antibacterial activity after 6 h of cultivation with <i>staphylococcus aureus</i>. The study showed that the antibacterial activity of the self-assembled dressing prepared by combination of BBR with Ag NP can be improved, and the drug release rate of the hydrogel dressing can be flexibly controlled through 3D printing technology.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"808-820"},"PeriodicalIF":2.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138797316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}