Xue Tian, Xiaoyue Ji, Ranran Zhang, Xiaojing Long, Jing Lin, Yingxue Zhang, Lu Zhan, Junjie Luan, Guiqiu Zhao, Xudong Peng
{"title":"Therapeutic effect of oxidized bletilla striata polysaccharide-natamycin eye drops on fungal keratitis.","authors":"Xue Tian, Xiaoyue Ji, Ranran Zhang, Xiaojing Long, Jing Lin, Yingxue Zhang, Lu Zhan, Junjie Luan, Guiqiu Zhao, Xudong Peng","doi":"10.1177/08853282241280844","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Fungal keratitis (FK) usually develops to a poor clinical prognosis due to the fungal invasion and excessive inflammatory reaction. In order to enhance the therapeutic effect of natamycin (NAT), we used the anti-inflammatory biological polysaccharide bletilla striata polysaccharide (BSP) combined with NAT to prepare a new eye drop -- oxidized bletilla striata polysaccharide-natamycin (OBN).</p><p><strong>Methods: </strong>UV-vis, FT-IR, and fluorescence spectroscopy were used to identify the synthesis of OBN. Biocompatibility of OBN was determined by CCK-8, scratch assay, and corneal toxicity test. RAW264.7 cells and C57BL/6 mice were stimulated with <i>A. fumigatus</i> and treated with PBS, OBN, or NAT. The anti-inflammatory activity of OBN was detected by RT-PCR and ELISA. In mice with FK, the clinical scores were used to evaluate the effect of OBN; HE staining was performed to assess the corneal pathological changes; MPO assay and immunofluorescence staining were used to investigate neutrophil infiltration.</p><p><strong>Results: </strong>OBN was synthesized by combining oxidized bletilla striata polysaccharide (OBSP) with NAT through Schiff base reaction. OBN did not affect cell viability at a concentration of 160 μg/mL in HCECs, RAW264.7 cells, and mouse corneas. OBN versus NAT significantly improved the prognosis of <i>A. fumigatus</i> keratitis by reducing disease severity, neutrophil infiltration, and expression of inflammatory factors <i>in vivo</i>. Additionally, OBN treatment down-regulated the mRNA and protein expression levels of inflammatory factors IL-1β, TNF-α, and IL-6 in RAW264.7 and mouse models.</p><p><strong>Conclusion: </strong>OBN is a compound prepared by covalently linking OBSP to the imino group of NAT through Schiff base reaction. OBN treatment down-regulated inflammation and improved the prognosis of mice with <i>A. fumigatus</i> keratitis.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241280844"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241280844","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Fungal keratitis (FK) usually develops to a poor clinical prognosis due to the fungal invasion and excessive inflammatory reaction. In order to enhance the therapeutic effect of natamycin (NAT), we used the anti-inflammatory biological polysaccharide bletilla striata polysaccharide (BSP) combined with NAT to prepare a new eye drop -- oxidized bletilla striata polysaccharide-natamycin (OBN).
Methods: UV-vis, FT-IR, and fluorescence spectroscopy were used to identify the synthesis of OBN. Biocompatibility of OBN was determined by CCK-8, scratch assay, and corneal toxicity test. RAW264.7 cells and C57BL/6 mice were stimulated with A. fumigatus and treated with PBS, OBN, or NAT. The anti-inflammatory activity of OBN was detected by RT-PCR and ELISA. In mice with FK, the clinical scores were used to evaluate the effect of OBN; HE staining was performed to assess the corneal pathological changes; MPO assay and immunofluorescence staining were used to investigate neutrophil infiltration.
Results: OBN was synthesized by combining oxidized bletilla striata polysaccharide (OBSP) with NAT through Schiff base reaction. OBN did not affect cell viability at a concentration of 160 μg/mL in HCECs, RAW264.7 cells, and mouse corneas. OBN versus NAT significantly improved the prognosis of A. fumigatus keratitis by reducing disease severity, neutrophil infiltration, and expression of inflammatory factors in vivo. Additionally, OBN treatment down-regulated the mRNA and protein expression levels of inflammatory factors IL-1β, TNF-α, and IL-6 in RAW264.7 and mouse models.
Conclusion: OBN is a compound prepared by covalently linking OBSP to the imino group of NAT through Schiff base reaction. OBN treatment down-regulated inflammation and improved the prognosis of mice with A. fumigatus keratitis.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.